Vol. 91
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-03-01
Reflection Budgeting Methodology for High-Speed Serial Link Signal Integrity Design
By
Progress In Electromagnetics Research B, Vol. 91, 59-77, 2021
Abstract
Reflective interference caused by impedance discontinuities in the interconnect is a serious impediment to high speed serial link designs. The reflections can be addressed either through expensive equalization circuits or through interconnect redesign. Here a new technique for determining the most significant places to make changes in an interconnect design is presented. Through linearizing the S-parameter cascading process three unique reflection budgets are created based on 1) frequency domain insertion loss deviation, 2) time domain peak distortion analysis and 3) time domain reflectometry. Example analysis of a 25.8 Gb/s NRZ system identifies the connectors as the primary contributors to reflective interference and estimates that the interactions with the rest of the interconnect with the connector impedance discontinuities reduces the system eye height by 84 mV.
Citation
Richard J. Allred, and Cynthia Furse, "Reflection Budgeting Methodology for High-Speed Serial Link Signal Integrity Design," Progress In Electromagnetics Research B, Vol. 91, 59-77, 2021.
doi:10.2528/PIERB20102108
References

1. Common Electrical I/O (CEI) - Electrical and Jitter Interoperability agreements for 6G+, 11G+bps, 25G+bps I/O and 56G+bps, OIF-CEI-04.0, 2017.

2. Fan, J., X. Ye, J. Kim, B. Archambeault, and A. Orlandi, "Signal integrity design for high-speed digital circuits: Progress and directions," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 392-400, 2010.
doi:10.1109/TEMC.2010.2045381

3. Cheng, Y.-S., K.-W. Chang, C.-T. Liu, and R.-B. Wu, "SI-aware vias and contact pads layouts and L-R equalization technique for 12 Gb/s backplane serial I/O interconnections," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 6, 1284-1292, 2013.
doi:10.1109/TEMC.2013.2266256

4. Kumar, V., M. Vasa, S. Muthusamy, G. Anand, S. Kumar, and B. Mutnury, "Impact of via stub position on high speed serial links," 2018 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 1-3, IEEE, 2018.

5. Seo, D., H. Lee, M. Park, and W. Nah, "Enhancement of differential signal integrity by employing a novel face via structure," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 26-33, 2017.
doi:10.1109/TEMC.2017.2725943

6. Zhang, B., et al. "A 28 Gb/s multistandard serial link transceiver for backplane applications in 28 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 50, No. 12, 3089-3100, 2015.
doi:10.1109/JSSC.2015.2475180

7. Telian, D., S. Camerlo, M. Steinberger, B. Katz, and W. Katz, "Simulating large systems with thousands of serial links," DesignCon 2012 Conference, Santa Clara, CA, 2012.

8. Yong, Z. N., et al. "Main cause of resonance appeared around 7.5 GHz on the frequency response of S-parameters of PWB," 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011.

9. Telian, D., S. Camerlo, K. Matta, M. Steinberger, B. Katz, and W. Katz, "Moving higher data rate serial links into production - Issues & solutions," DesignCon 2014 Conference, Santa Clara, CA, 2014.

10. IEEE Standard for Ethernet, Amendment 2: Physical Layer Specifications and Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables, IEEE Std 802.3bj-2014, 2014.

11. Ya'acob, N., J. Johari, M. Zolkapli, A. L. Yusof, S. S. Sarnin, and N. F. Naim, "Link budget calculator system for satellite communication," 2017 International Conference on Electrical, Electronics and System Engineering (ICEESE), 115-119, IEEE, 2017.
doi:10.1109/ICEESE.2017.8298397

12. Allred, R. J. and C. M. Furse, "Linearization of S-parameter cascading for analysis of multiple reflections," Applied Computational Electromagnetics Society Journal, Vol. 33, No. 12, 2018.

13. Frei, J., X.-D. Cai, and S. Muller, "Multiport S-parameter and T-parameter conversion with symmetry extension," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 11, 2493-2504, 2008.
doi:10.1109/TMTT.2008.2005873

14. De Paulis, F., Y.-J. Zhang, and J. Fan, "Signal/power integrity analysis for multilayer printed circuit boards using cascaded S-parameters," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 4, 1008-1018, 2010.
doi:10.1109/TEMC.2010.2072784

15. Reuschel, T., S. Müller, and C. Schuster, "Segmented physics-based modeling of multilayer printed circuit boards using stripline ports," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 1, 197-206, 2015.
doi:10.1109/TEMC.2015.2481001

16. Mason, S. J., "Feedback theory: Further properties of signal flow graphs," Proceedings of the IRE, Vol. 44, No. 7, 920-926, 1956.
doi:10.1109/JRPROC.1956.275147

17. Allred, R. J., "System and method for signal integrity waveform decomposition analysis,", U.S. Patent US20160103944A1, April 25, 2017.

18. Allred, R. J., B. Katz, and C. Furse, "Ripple analysis: Identify and quantify reflective interference through ISI decomposition," 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI), 2016.

19. Healey, A., C. Moore, R. Mellitz, A. Ran, and L. Ben-Artsi, "Proposal for a causal transmission line model," IEEE P802.3bj Task Force, March 2014.

20. Triverio, P., S. Grivet-Talocia, M. S. Nakhla, F. G. Canavero, and R. Achar, "Stability, causality, and passivity in electrical interconnect models," IEEE Transactions on Advanced Packaging, Vol. 30, No. 4, 795-808, 2007.
doi:10.1109/TADVP.2007.901567

21. Lu, J. and F. Dawson, "EMC computer modeling and simulation techniques," 22nd Annual Review of Progress in Applied Computational Electromagneticss, 2006.

22. Eudes, T., B. Ravelo, and A. Louis, "Experimental validations of a simple PCB interconnect model for high-rate signal integrity," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 397-404, 2011.
doi:10.1109/TEMC.2011.2165216

23. Eudes, T., B. Ravelo, and A. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.
doi:10.2528/PIER10111805

24. Casper, B. K., M. Haycock, and R. Mooney, "An accurate and efficient analysis method for multi-Gb/s chip-to-chip signaling schemes," 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No. 02CH37302), 54-57, IEEE, 2002.
doi:10.1109/VLSIC.2002.1015043

25. Mathworks(r) Serdes Toolbox(tm) Reference (R2020a), retrived April 24, 2020 from https://www.mathworks.com/help/pdf_doc/serdes/serdes_ref.pdf.

26. Dsilva, H., et al. "Finding reflective insertion loss noise and reflectionless insertion loss," DesignCon 2020 Conference, Santa Clara, CA, 2020.

27. Liu, P., J. Zhang, and J. Fang, "Accurate characterization of lossy interconnects from TDR waveforms," 2013 IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems, 187-190, 2013.
doi:10.1109/EPEPS.2013.6703495

28. Schuster, C. and W. Fichtner, "Signal integrity analysis of interconnects using the FDTD method and a layer peeling technique," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 2, 229-233, 2000.
doi:10.1109/15.852417

29. Allred, R., "Crosstalk decomposition and the triangle inequality property of peak distortion analysis," DesignCon 2010 Conference, 2010.

30. Wu, Y. and X. Zhang, "Analysis of channel crosstalk decomposition methods," 2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 575-579, 2019.
doi:10.1109/ISEMC.2019.8825229