Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-10-01

Dual Feed Wideband Annular Ring Microstrip Antenna with Circular DGS for Reduced SAR

By Mahesh Munde, Anil Nandgaonkar, and Shankar Deosarkar
Progress In Electromagnetics Research B, Vol. 88, 175-195, 2020
doi:10.2528/PIERB20071804

Abstract

In this article quad-band circular antenna is designed for multiband devices operated close to human body, and the investigation on parametric study for length of feed, width of feed, and length of ground is carried out. Specific absorption rate (SAR) is also evaluated and found to exceed standard limits for lower band. Further investigation to reduce the value of SAR leads to the design of an annular ring antenna with partial ground. Parametric study on the ratio of outer to inner ring radii is carried out to excite higher resonant modes and optimize the performance of annular ring antenna. SAR is evaluated for different bands, and 9{\%} reduction is observed for same dimensions of circular antenna with partial ground, but SAR still exceeds the limit for lower band. A novel approach of using dual feeds with half operating input power in magnitude and 180° out phase at each port for SAR reduction and performance optimization is presented in this work. Annular ring antenna with parametric study on variation in the ratio of ring radii and circular defect in ground structure is performed, and it leads to wideband operation, gain enhancement, and reduction in SAR. SAR reduction achieved is in the range of 66.93% to 82.15% in 1-gram of tissue and 64.43% to 82.20% in 10-gram of tissue at different bands and well within the limits for all the operating bands.

Citation


Mahesh Munde, Anil Nandgaonkar, and Shankar Deosarkar, "Dual Feed Wideband Annular Ring Microstrip Antenna with Circular DGS for Reduced SAR," Progress In Electromagnetics Research B, Vol. 88, 175-195, 2020.
doi:10.2528/PIERB20071804
http://jpier.org/PIERB/pier.php?paper=20071804

References


    1. Campbell, D. and C. J. Reddy, "Antenna design considerations for LTE enabled tablets," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1140-1141, Vancouver, 2015.

    2. Wong, K., "4G/Multiband handheld device ground antennas," Asia-Pacific Microwave Conference Proceedings (APMC), 134-136, Seoul, 2013.

    3. Gampala, G., C. J. Reddy, O. Stabler, and T. Hager, "Compact antenna for MIMO LTE mobile phone applications," Microwave Journal, Vol. 55, No. 3, 98-110, 2012.

    4. Chew, W., "A broad-band annular-ring microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 918-922, Sept. 1982.
    doi:10.1109/TAP.1982.1142913

    5. El-khamy, S., R. El-Awadi, and E. A. El-Sharrawy, "Simple analysis and design of annular ring microstrip antennas," IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 133, No. 3, 198-202, 1986.
    doi:10.1049/ip-h-2.1986.0035

    6. Chakraborty, S. and S. Srivastava, "High gain annular ring antenna," International Conference on Devices and Communications (ICDeCom), 1-5, Mesra, 2011.

    7. Garg, R., Microstrip Antenna Design Handbook, Artech House, Boston, 2001.

    8. Balanis, C., Antenna Theory: Analysis and Design, Reprint, Wiley, New-Delhi, India, 2016.

    9. Guha, D., M. Biswas, M. Yahia, and M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 455-458, 2005.
    doi:10.1109/LAWP.2005.860211

    10. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "A simple and accurate model for microstrip structures with slotted ground plane," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 133-135, Apr. 2004.
    doi:10.1109/LMWC.2004.828725

    11. Lin, D.-B., I.-T. Tang, and M.-Z. Hong, "A compact quad-band PIFA by tuning the defected ground structure for mobile phones," Progress In Electromagnetics Research B, Vol. 24, 173-189, 2010.
    doi:10.2528/PIERB10070608

    12. Chen, Z., Y.-L. Ban, J.-H. Chen, J. L.-W. Li, and Y.-J. Wu, "Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure," Progress In Electromagnetics Research, Vol. 129, 469-483, 2012.
    doi:10.2528/PIER12061203

    13. Khandelwal, M., B. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, 1-22, 2017.
    doi:10.1155/2017/2018527

    14. Lin, J. C., "Specific absorption rates (SARs) induced in head tissues by microwave radiation from cell phones," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 138-139, Oct. 2000.
    doi:10.1109/74.883512

    15. Institute of Electrical and Electronic Engineers (IEEE), IEEE C95.1-2005, Standards for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, IEEE Press, New York, 2005.

    16. US Federal Communication Commission, Office of Engineering and Technology, "Evaluating compliance with FCC-specified guidelines for human exposure to radio radiofrequency radiation," OET Bulletin 65, Washington, DC, 1997.

    17. International commission on Non-Ionizing Radiation Protection (ICNIRP), "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 74, 494-522, 1998.

    18. Munde, M., A. Nandgaonkar, and S. Deosarkar, "Low specific absorption rate antenna using electromagnetic band gap structure for long term evolution band 3 application," Progress In Electromagnetics Research M, Vol. 80, 23-34, 2019.
    doi:10.2528/PIERM18102103

    19. Agrawal, T. and S. Srivastava, "Compact MIMO antenna for multiband mobile applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 2, 542-552, 2017.
    doi:10.1590/2179-10742017v16i2899

    20. Bhattacharjee, S., M. Mitra, and S. R. Bhadra Chaudhuri, "An effective SAR reduction technique of a compact meander line antenna for wearable applications," Progress In Electromagnetics Research M, Vol. 55, 143-152, 2017.
    doi:10.2528/PIERM16121501

    21. Faruque, M., M. Hossain, and M. Islam, "Low specific absorption rate microstrip patch antenna for cellular phone applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1540-1546, Nov. 2015.
    doi:10.1049/iet-map.2014.0861

    22. Abdullah, H. H. and K. S. Sultan, "Multiband compact low sar mobile hand held antenna," Progress In Electromagnetics Research Letters, Vol. 49, 65-71, 2014.
    doi:10.2528/PIERL14061605

    23. Sultan, K., H. Abdullah, and E. Abdallah, "Low SAR, simple printed compact multiband antenna for mobile and wireless communication applications," International Journal of Antennas and Propagation, Vol. 2014, 1-8, 2014.
    doi:10.1155/2014/946781

    24. Wong, K., W. Chen, C. Wu, and W. Li, "Small-size internal eight-band LTE/WWAN mobile phone antenna with internal distributed LC matching circuit," Microwave Optical Technology Letters, Vol. 52, 2244-2250, 2010.
    doi:10.1002/mop.25431

    25. Chiu, C.-W., C.-H. Chang, and Y.-J. Chi, "Multiband folded loop antenna for smart phones," Progress In Electromagnetics Research, Vol. 102, 213-226, 2010.
    doi:10.2528/PIER10011601

    26. Cabedo, A., J. Anguera, C. Picher, M. Ribo, and C. Puente, "Multiband handset antenna combining a PIFA, slots, and ground plane modes," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2526-2533, Sept. 2009.
    doi:10.1109/TAP.2009.2027039

    27. Kang, T. and K. Wong, "Chip-inductor-embedded small-size printed strip monopole for WWAN operation in the mobile phone," Microwave Optical Technology Letters, Vol. 51, 966-971, 2009.
    doi:10.1002/mop.24225