Vol. 90
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-01-03
State Space Modelling of Electromagnetic Responses --- a Practical Approach to Extract Parameters from Simulated OR Measured Data
By
Progress In Electromagnetics Research B, Vol. 90, 63-89, 2021
Abstract
As computing power and algorithmic advances have evolved rapidly in the recent past, it is now feasible to solve complex electromagnetic (EM) problems involving scattering, radar cross section, antenna design, microwave circuit design, artificial EM materials etc., using full-wave numerical methods. Several general-purpose commercial software packages are routinely used in industry in all these domains for EM analysis or design. However, the task of processing large sets of data output from these design studies and analyses is generally beyond the realm of commercial software packages, and the designer spends many hours writing problem-specific computer programs to extract the desired performance parameters. Some examples where auxiliary processing is needed for the extraction of EM parameters of interest include determination of coupling coefficients or the unloaded quality factor of a dielectric resonator, de-embedding feed lines from antenna currents, removal of discontinuity effects, and the extraction of equivalent circuit models. The same considerations as simulated data apply to the parametric analysis of measured data in the presence of noise. This paper presents a versatile data-driven spectral model derived from a state-space system representation of the computed or measured EM fields, from which all the parameters of interest can be extracted. An attractive feature of the state space method is its ability to identify a small number of the system transfer function poles uniquely associated with a specific scattering mechanism or modal response, thereby enabling its isolation from the total response for detailed study. For example, using SSM, specular reflection and creeping waves on a smooth convex surface can be analyzed and the diffraction at the edges can be isolated from the composite RCS of a large body. The desired field parameter is extracted or estimated from synthetic or measured data using a linear system of a relatively small model order that characterizes the specific modal response of interest. Illustrative examples will be presented to demonstrate the usefulness of the proposed approach for parametric extraction.
Citation
Krishna Naishadham, "State Space Modelling of Electromagnetic Responses --- a Practical Approach to Extract Parameters from Simulated OR Measured Data," Progress In Electromagnetics Research B, Vol. 90, 63-89, 2021.
doi:10.2528/PIERB20070901
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, NY, 1968.

2. Jin, J., The Finite Element Method in Electromagnetics, John Wiley, New York, NY, 1992.

3. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 1995.

4. Hoefer, W. J. R., "The transmission-line matrix method — Theory and applications," IEEE Trans. Microwave Theory Tech., Vol. 33, No. 10, 882-893, Oct. 1985.
doi:10.1109/TMTT.1985.1133146

5. De Prony, B. and R. Gaspard-Clair-Francois-Marie, "Essai experimental et analytique sur les lois de la Dilatabilite des fluides elastiques et sur celles de la Force expansive de la vapeur de l’eau et de la vapeur de l’alcohol, a differerentes temperatures," J. de l’Ecole’ Polytechnique, Vol. 1, 24-76, 1795.

6. Kay, S. M. and S. L. Marple, "Spectrum analysis — A modern perspective," Proc. IEEE, Vol. 69, No. 11, 1380-1419, Nov. 1981.
doi:10.1109/PROC.1981.12184

7. Jain, V. K., "Filter analysis by use of pencil-of-functions: Part 1," IEEE Trans. Circuits Syst., Vol. 21, 574-579, Sept. 1974.
doi:10.1109/TCS.1974.1083919

8. Jain, V. K., "Filter analysis by use of pencil-of-functions: Part 2," IEEE Trans. Circuits Syst., Vol. 21, 580-583, Sept. 1974.
doi:10.1109/TCS.1974.1083920

9. Jain, V. K., T. K. Sarkar, and D. D. Weiner, "Rational modeling by pencil-of-functions method," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 31, 564-573, Jun. 1983.
doi:10.1109/TASSP.1983.1164116

10. Ogata, K., Discrete-Time Control Systems, Prentice-Hall, New York, 1987.

11. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. Acoust. Speech, Signal Processing, Vol. 38, No. 5, 814-824, 1990.
doi:10.1109/29.56027

12. Cadzow, J. A., "Spectral estimation: An overdetermined rational model equation approach," Proc. IEEE, Vol. 70, No. 9, 907-939, Sept. 1982.
doi:10.1109/PROC.1982.12424

13. Shaw, A. K., "A decoupled approach for optimal estimation of transfer function parameters from input-output data," IEEE Trans. Signal Processing, Vol. 42, 1275-1278, May 1994.
doi:10.1109/78.295183

14. Paulraj, A., R. Roy, and T. Kailtath, "Estimation of signal parameters via rotational invariance techniques-ESPRIT," Proc. Nineteenth Ann. Asilomar Conference on Circuits, System, and Computers, 83-89, Pacific Grove, CA, Nov. 1985.

15. Roy, R., A. Paulraj, and T. Kailath, "ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, 1340-1342, Oct. 1986.

16. Roy, R. and T. Kailath, "ESPRIT-Estimation of signal parameters via rotational Invariance techniques," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, 984-995, Jul. 1989.

17. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

18. Kung, S. Y., K. S. Arun, and D. V. Bhaskar Rao, "State-space and singular value decomposition-based approximation methods for the harmonic retrieval problem," J. Optical Society of America, Vol. 73, No. 12, 1799-1811, Dec. 1983.
doi:10.1364/JOSA.73.001799

19. Fuchs, J. J., "State-space modeling and estimation of time differences of arrival," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, 232-244, Apr. 1986.
doi:10.1109/TASSP.1986.1164822

20. Aoki, M., State Space Modeling of Time Series, Springer Verlag, New York, 1987.
doi:10.1007/978-3-642-96985-0

21. Rao, B. D. and K. S. Arun, "Model based processing of signals: A state space approach," Proc. IEEE, Vol. 80, No. 2, 283-309, Feb. 1992.
doi:10.1109/5.123298

22. Van Blaricum, M. L. and R. Mittra, "A technique for extracting the poles and residues of a system directly from its transient response," IEEE Trans. Antennas Propagat., Vol. 23, 777-781, Nov. 1975.

23. Hurst, M. P. and R. Mittra, "Scattering center analysis via Prony’s method," IEEE Trans. Antennas Propagat., Vol. 35, 986-988, Aug. 1987.
doi:10.1109/TAP.1987.1144210

24. Mackay, A. J. and A. McCowen, "An improved pencil-of-functions method and comparisons with traditional methods of pole extraction," IEEE Trans. Antennas Propagat., Vol. 35, No. 4, 435-441, Apr. 1987.
doi:10.1109/TAP.1987.1144117

25. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-functions method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 229-234, Feb. 1989.
doi:10.1109/8.18710

26. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters for exponentially damped/undamped sinusoids in noise," IEEE Trans. Accoust. Speech, Signal Processing, Vol. 36, No. 5, 814-824, May 1990.
doi:10.1109/29.56027

27. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the FDTD and Prony’s methods," IEEE Microwave Guided Wave Lett., Vol. 2, No. 11, 431-433, Nov. 1992.
doi:10.1109/75.165633

28. Naishadham, K., "De-embedding intrinsic parameters of high-Q dielectric resonators from noisy measurements," Microwave and Optical Technology Letters, Vol. 48, No. 8, 1453-1458, Aug. 2006.
doi:10.1002/mop.21730

29. Ko, W. and R. Mittra, "A combination of FD-TD and Prony’s methods for analyzing microwave integrated circuits," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 12, 2176-2181, Dec. 1991.
doi:10.1109/22.106561

30. Houshmand, B., T. W. Huang, and T. Itoh, "Microwave structure characterization by a combination of FDTD and system identification methods," IEEE Microwave and Guided Wave Lett., Vol. 3, No. 8, 262-264, Aug. 1993.
doi:10.1109/75.242221

31. Naishadham, K. and X. P. Lin, "Application of spectral domain Prony’s method to the FDTD analysis of planar microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2391-2398, Dec. 1994.
doi:10.1109/22.339772

32. Adve, R. S., T. K. Sarkar, O. M. C. Pereira-Filho, and S. M. Rao, "Extrapolation of time-domain responses from three-dimensional conducting objects utilizing the matrix pencil technique," IEEE Trans. Antennas Propagat., Vol. 45, No. 1, 147-156, Jan. 1997.
doi:10.1109/8.554252

33. Shaw, A. K. and K. Naishadham, "ARMA-based time-signature estimator for FDTD analysis of resonant structures," IEEE Trans. Antennas Propagat., Vol. 49, No. 3, 327-339, Mar. 2001.
doi:10.1109/8.918605

34. Naishadham, K. and J. E. Piou, "Representation of electromagnetic responses in time domain using state space system identification method," IEEE Trans. Antennas Propagat., Vol. 64, No. 4, 1404-1415, Apr. 2016.
doi:10.1109/TAP.2016.2521905

35. Wang, Y. and H. Ling, "Multimode parameter extraction for multiconductor transmission lines via single-pass FDTD and signal processing techniques," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 1, 89-96, Jan. 1998.
doi:10.1109/22.654927

36. Naishadham, K., J. Muldavin, and J. E. Piou, "Broadband parametric representation of packaged mems interconnects using a robust state space spectral model," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1482-1485, Jun. 2008.
doi:10.1002/mop.23402

37. McClure, M., R. C. Qiu, and L. Carin, "On the super-resolution identification of observables from swept-frequency data," IEEE Trans. Antennas Propagat., Vol. 45, No. 4, 631-641, Apr. 1997.
doi:10.1109/8.564089

38. Burrows, M. L., "Two-dimensional ESPRIT with tracking for radar imaging and feature extraction," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 524-532, Feb. 2004.
doi:10.1109/TAP.2003.822411

39. Naishadham, K. and J. E. Piou, "State-space spectral estimation of characteristic electromagnetic responses in wideband data," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 406-409, 2005.
doi:10.1109/LAWP.2005.859386

40. Naishadham, K. and J. E. Piou, "A robust state space model for the characterization of extended returns in radar target signatures," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1742-1751, Jun. 2008.
doi:10.1109/TAP.2008.916932

41. Naishadham, K., J. E. Piou, L. Ren, and A. E. Fathy, "Detection of cardiopulmonary parameters from ultra-wideband radar measurements using the state space method," IEEE Trans. Biomedical Circuits and Systems, Vol. 10, No. 6, 1037-1046, Dec. 2016.
doi:10.1109/TBCAS.2015.2510652

42. Ren, L., H. Wang, K. Naishadham, O. Kilic, and A. E. Fathy, "Phase-based methods for heart rate detection using UWB impulse doppler radar," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 10, 3319-3331, Oct. 2016.
doi:10.1109/TMTT.2016.2597824

43. Ren, L., N. Tran, H. Wang, K. Naishadham, J. E. Piou, O. Kilic, and A. E. Fathy, "Short-time state space method for micro-doppler identification of walking subjects using UWB impulse doppler radar," IEEE Trans. Microwave Theory Tech., Vol. 66, No. 7, 3521-3534, May 2018.
doi:10.1109/TMTT.2018.2829523

44. Sahin, A. and E. L. Miller, "GPR localization of buried multiple objects using high resolution array processing," PIERS Proceedings, Cambridge, MA, Jul. 1997.

45. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood and Cramer-Rao bound," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, 720-741, May 1989.
doi:10.1109/29.17564

46. Stoica, P. and A. Nehorai, "Performance comparison of subspace rotation and MUSIC methods for direction estimation," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 39, No. 2, 446-453, Feb. 1991.
doi:10.1109/78.80828

47. Rao, B. D. and K. V. S. Hari, "Performance analysis of TAM and ESPRIT for determining the direction of arrival of plane waves in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, 1990-1995, Dec. 1989.
doi:10.1109/29.45548

48. Hua, Y. and T. K. Sarkar, "Matrix pencil method and its performance," Proc. IEEE ICASSP, 2476-2479, Apr. 1988.

49. Hua, Y. and T. K. Sarkar, "On SVD for estimating generalized eigenvalues of singular matrix pencil in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 39, 892-900, Apr. 1991.
doi:10.1109/78.80911

50. Rao, B. D., "Sensitivity considerations in state space model-based harmonic retrieval methods," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, 1789-1794, Nov. 1989.

51. Rao, B. D., "Sensitivity analysis of state space methods in spectrum estimation," Proc. ICASSP, 1517-1520, Apr. 1987.

52. Piou, J. E., K. M. Cuomo, and J. T. Mayhan, "A state space technique for ultrawide-bandwidth coherent processing,", Technical Report (TR) 1054, Massachusetts Institute of Technology, Lincoln Laboratory, Jul. 1999.

53. Piou, J. E., "A state identification method for 1-D measurements with spectral gaps," AIAA Guidance Navigation and Control Conference, Paper No. 2005-5943, San Francisco, CA, Aug. 2005.

54. Rao, B. D., "Relationship between matrix pencil and state space based harmonic retrieval methods," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, 177-179, Jan. 1990.
doi:10.1109/29.45568

55. Jang, S., W. Choi, T. K. Sarkar, and E. L. Mokole, "Quantitative comparison between matrix pencil method and state space-based methods for radar object identification," Radio Science Bulletin, No. 313, 27-38, Jun. 2005.

56. Naishadham, K. and J. E. Piou, "A review of the state space method for model-based extraction of electromagnetic parameters in radar and scattering problems," FERMAT, 2018.

57. Viberg, M., "Subspace-based methods for the identification of linear time-invariant systems," Automatica, Vol. 31, 1835-1851, 1995.
doi:10.1016/0005-1098(95)00107-5

58. Overschee, P. V. and B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation and Applications, Kluwer, Norwell, MA, 1996.
doi:10.1007/978-1-4613-0465-4

59. Chou, C. T. and J. M. Maciejowski, "System identification using balanced parametrizations," IEEE Trans. Automat. Contr., Vol. 42, 956-974, Jul. 1997.

60. Makila, P. M., "State space identification of stable systems," Int. J. Control, Vol. 72, 193-205, 1999.
doi:10.1080/002071799221181

61. Piou, J. E., K. M. Cuomo, and J. T. Mayhan, "Algorithm development and performance bounds for sparse-band, sparse-angle processing,", Project Report NTP-4, MIT Lincoln Laboratory, Lexington, MA, Jun. 2001.

62. Piou, J. E., "Balanced realization for 2-D data fusion," AIAA Guidance Navigation and Control Conference, Paper No. 2005-5964, San Francisco, CA, Aug. 2005.

63. Kailath, T., Linear Systems, Prentice-Hall, Englewood Cliffs, N.J., 1980.

64. Ogata, K., Discrete-Time Control Systems, Prentice-Hall, New York, 1987.

65. Kalman, R. E., "Mathematical description of linear dynamical systems," SIAM Journal Series A Control Theory, Vol. 1, No. 2, 152-192, 1963.

66. Rissanen, J., "Modeling by shortest data description," Automatica, Vol. 14, No. 5, 465-471, 1978.
doi:10.1016/0005-1098(78)90005-5

67. Akaike, H., "A new look at the statistical model identification," IEEE Trans. Automat. Contr., Vol. 19, 716-723, Jun. 1974.
doi:10.1109/TAC.1974.1100705

68. Wax, M. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 33, 387-392, Apr. 1985.
doi:10.1109/TASSP.1985.1164557

69. Wax, M. and I. Ziskind, "Detection of the number of coherent signals by the MDL principle," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 27, 1190-1196, Aug. 1989.
doi:10.1109/29.31267

70. Droitcour, A. D., O. Boric-Lubecke, and G. T. A. Kovacs, "Signal-to-noise ratio in Doppler radar system for heart and respiratory rate measurements," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 10, 2498-2507, Oct. 2009.
doi:10.1109/TMTT.2009.2029668

71. Cheng, D. K., Field and Wave Electromagnetics, Chap. 9, 474, Addison-Wesley, 1989.

72. Harrington, R. F., "Time Harmonic Electromagnetic Fields," McGraw-Hill, Chap. 6, 1961.

73. Senior, T. B. A. and R. F. Goodrich, "Scattering by a sphere," Proc. IEE (London), Vol. 111, 907-916, May 1964.

74. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Chap. 6, Prentice Hall, Englewood Cliffs, NJ, 1973.

75. Naishadham, K. and J. E. Piou, "A novel one-dimensional block-processing approach to two-dimensional NMR spectroscopy," 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 1352-1355, Washington, DC, Apr. 2007.

76. Piou, J. E., K. Naishadham, and A. E. Fathy, "A one-dimensional block processing method for non-invasive detection of cardiac and respiratory rates," IEEE Radar Conference, Oklahoma City, OK, Apr. 2018.

77. Duffy, S., C. Bozler, S. Rabe, J. Knecht, L. Travis, P. Wyatt, C. Keast, and M. Gouker, "MEMS microswitches for reconfigurable microwave circuitry," Microwave and Wireless Component Lett., Vol. 11, No. 3, 106-108, Mar. 2001.
doi:10.1109/7260.915617

78. Muldavin, J., C. Bozler, S. Rabe, and C. Keast, "Wide-band low-loss MEMS packaging technology," IEEE Int. Microwave Symp., Long Beach, CA, Jun. 2005.

79. Van Valkenburg, M. E., Introduction to Modern Network Synthesis, John Wiley & Sons, New York, 1966.

80. Guillemin, E. A., "A summary of modern methods of network synthesis," Advances in Electronics and Electron Physics, Vol. 3, No. 1951, 261-303, May 2008.