Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-04

Moment Method Treatment of Corrugations with Fins Over Ridges and Stratified Covers Using Dyadic Cavity and Multilayer Green's Functions for Studies of Higher-Order Diffraction Modes

By Malcolm Ng Mou Kehn
Progress In Electromagnetics Research B, Vol. 88, 1-18, 2020
doi:10.2528/PIERB20050102

Abstract

There has been a presented modal approach for analyzing the scattering of plane waves that are incident on penetrable gratings with metallic fins lined over both exterior surfaces of each conducting bar to create flanged apertures, which altogether is covered on both sides by multiple dielectric layers. The new degrees of freedom afforded by the special complex geometry offer ways to improve the capabilities of various applications such as beam deflectors, resolution of spectroscopic gratings, grating couplers, and grating pulse compression/decompression, as shall be demonstrated herein for the latter two. All of these entail higher-order diffraction modes, which are advantageously studied by the aforementioned analytical tool. Outcomes of measurements on a fabricated prototype that agree well with expectations from theory are also presented.

Citation


Malcolm Ng Mou Kehn, "Moment Method Treatment of Corrugations with Fins Over Ridges and Stratified Covers Using Dyadic Cavity and Multilayer Green's Functions for Studies of Higher-Order Diffraction Modes," Progress In Electromagnetics Research B, Vol. 88, 1-18, 2020.
doi:10.2528/PIERB20050102
http://jpier.org/PIERB/pier.php?paper=20050102

References


    1. Flanders, D. C., H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filter for thin film optical waveguides," Appl. Phys. Lett., Vol. 24, 194-196, 1974.
    doi:10.1063/1.1655150

    2. Schmidt, R. V., D. C. Flanders, C. V. Shank, and R. D. Standley, "Narrow band grating filters for thin film optical waveguides," Appl. Phys. Lett., Vol. 25, 651-652, 1974.
    doi:10.1063/1.1655346

    3. Tamir, T. and H. L. Bertoni, "Lateral displacement of optical beams at multilayered and periodic structures," J. Opt. Soc. Amer., Vol. 61, 1397-1413, 1971.
    doi:10.1364/JOSA.61.001397

    4. Harris, J. H., R. K. Winn, and D. G. Dalgoutte, "Theory and design of periodic couplers," Appl. Opt., Vol. 11, 2234-2241, 1972.
    doi:10.1364/AO.11.002234

    5. Peng, S. T., T. Tamir, and H. L. Bertoni, "Leaky wave analysis of optical periodic couplers," Electron. Lett., Vol. 9, 150-152, 1973.
    doi:10.1049/el:19730111

    6. Kuhn, L., P. F. Heidrich, and E. G. Lean, "Optical guided wave mode conversion by an acoustic surface wave," Appl. Phys. Lett., Vol. 19, 428-430, 1971.
    doi:10.1063/1.1653758

    7. Sasaki, H., I. Kushibiki, and N. Chubachi, "Efficient acousto-optic TE-TM mode conversion in ZnO films," Appl. Phys. Lett., Vol. 25, 476-477, 1974.
    doi:10.1063/1.1655554

    8. Ohmachi, Y., "Acousto-optic TE-TM mode conversion in a thin film of amorphous tellurium dioxide," Electron. Lett., Vol. 9, 539-541, 1973.
    doi:10.1049/el:19730397

    9. Tseng, S. C. C., A. R. Reisinger, E. A. Geiss, and C. G. Powell, "Mode conversion in magneto-optic waveguides subjected to a periodic permalloy structure," Appl. Phys. Lett., Vol. 24, 265-267, 1974.
    doi:10.1063/1.1655177

    10. Gia Russo, D. P. and J. H. Harris, "Electro-optic modulation in a thin film waveguide," Appl. Opt., Vol. 10, 2786-2788, 1971.
    doi:10.1364/AO.10.2786_1

    11. Polky, J. N. and J. H. Harris, "Electro-optic thin film modulator," Appl. Phys. Lett., Vol. 21, 307-309, 1972.
    doi:10.1063/1.1654389

    12. Tien, P. K., R. J. Martin, R. Wolfe, R. C. LeCraw, and S. L. Blank, "Switching and modulation of light in magneto-optic waveguides of garnet films," Appl. Phys. Lett., Vol. 21, 294-396, 1912.

    13. Kuhn, L., M. L. Dakss, P. F. Heidrich, and B. A. Scott, "Deflection of an optical guided wave by a surface acoustic wave," Appl. Phya Lett., Vol. 17, 265-267, 1970.
    doi:10.1063/1.1653393

    14. Giallorenzi, T. G. and A. F. Milton, "Light deflection in multimode waveguides using the acousto-optic interaction," J. Appl. Phys., Vol. 45, 1762-1774, 1974.
    doi:10.1063/1.1663488

    15. Wille, D. A. and M. C. Hamilton, "Acoustoaptic deflection in Ta2O5 waveguides," Appl. Phys. Lett., Vol. 24, 159-160, 1974.
    doi:10.1063/1.1655134

    16. Luukkala, M. and P. Merilainen, "Image scanning by acousto-electro-optic interaction," Elect. Lett., Vol. 10, 80-81, 1974.
    doi:10.1049/el:19740062

    17. Yamamoto, Y., T. Kamiya, and H. Yanai, "Improved coupled mode analysis of corrugated waveguides and lasers," IEEE Journal of Quantum Electronics, Vol. 14, No. 4, 245-258, Apr. 1978, doi: 10.1109/JQE.1978.1069769.
    doi:10.1109/JQE.1978.1069769

    18. Nakata, Y. and M. Koshiba, "Boundary-element analysis of plane-wave di®raction from groove-type dielectric and metallic gratings," J. Opt. Soc. Am. A, Vol. 7, 1494-1502, 1990.
    doi:10.1364/JOSAA.7.001494

    19. Matsumoto, M., "Analysis of radiation properties of channel-waveguide gratings," J. Opt. Soc. Am. B, Vol. 8, 434-442, 1991.
    doi:10.1364/JOSAB.8.000434

    20. Butler, J. K., W. E. Ferguson, G. A. Evans, P. J. Stabile, and A. Rosen, "A boundary element technique applied to the analysis of waveguides with periodic surface corrugations," IEEE Journal of Quantum Electronics, Vol. 28, No. 7, 1701-1709, Jul. 1992, doi: 10.1109/3.142557.
    doi:10.1109/3.142557

    21. Park, T. J., H. J. Eom, and K. Yoshitomi, "Analysis of TM scattering from finite rectangular grooves in a conducting plane," J. Opt. Soc. Am. A, Vol. 10, 905-911, 1993.
    doi:10.1364/JOSAA.10.000905

    22. Nishimoto, M. and H. Ikuno, "Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects," Progress In Electromagnetics Research, Vol. 23, 39-58, 1999.
    doi:10.2528/PIER98101602

    23. Armeanu, A. M., M. K. Edee, G. Granet, and P. Schiavone, "Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating," Progress In Electromagnetics Research, Vol. 106, 243-261, 2010.
    doi:10.2528/PIER10021902

    24. Granet, G., L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, "Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution," J. Opt. Soc. Am. A, Vol. 27, 1303-1310, 2010.
    doi:10.1364/JOSAA.27.001303

    25. Frances Monllor, J., C. Neipp, A. Marquez Ruiz, A. Belendez, and I. Pascual, "Analysis of reflection gratings by means of a matrix method approach," Progress In Electromagnetics Research, Vol. 118, 167-183, 2011.

    26. Ng Mou Kehn, M., "Moment method analysis of plane wave scattering from planar corrugated surfaces using parallel-plate cavity Green's functions and derivation of analytic reflection-phase formulas for both polarizations and oblique azimuth planes," Radio Sci., Vol. 47, RS3008, 1-17, Jun. 2012.

    27. Ng Mou Kehn, M. and W. Y. Lai, "Modal analysis of gratings with conducting strip-loaded bars and sandwiched between multiple dielectric layers," IEEE Trans. Antennas Propag., Vol. 68, No. 6, 5027-5032, Jun. 2020, doi: 10.1109/TAP.2019.2955214.
    doi:10.1109/TAP.2019.2955214

    28. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley & Sons, New York, 1989.

    29. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.
    doi:10.1109/9780470544631

    30. Ng Mou Kehn, M., "Modal analysis of substrate integrated waveguides with rectangular via-holes using cavity and multilayer Green's functions," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 10, 2214-2231, Oct. 2014.
    doi:10.1109/TMTT.2014.2344626

    31. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Chap. 14, Prentice Hall, New Jersey, 1991.

    32. Rubin, B. J. and H. L. Bertoni, "Scattering from a periodic array of conducting bars of finite surface resistance," Radio Sci., Vol. 20, No. 4, 827-832, Jul.-Aug., 1985.
    doi:10.1029/RS020i004p00827

    33. Gedney, S. D. and R. Mittra, "Analysis of the electromagnetic scattering by thick gratings using a combined FEM/MM solution," IEEE Trans. Antennas Propag., Vol. 39, No. 11, 1605-1614, Nov. 1991.
    doi:10.1109/8.102776