Vol. 87
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-05-09
Surface Film Characterization from X-to-k -Band Radar Signal Inversion, a Wind-Wave-Pool Experiment
By
Progress In Electromagnetics Research B, Vol. 87, 93-110, 2020
Abstract
This paper describes an experiment in a wind-wave pool in Brest, France, to characterize surface films when observed at moderate incidence from X-to-K radar bands. Measurements of the radar backscattered field were carried out for various seawater surface states and incidence angles. From this meaningful database (mainly lying in simultaneous acquisitions in X-, Ku-, and K-bands), an inversion method is proposed to characterize the elasticity modulus of the surface film. This process is based on the minimization of the cost function correlating the values given by a physical model of the damping ratio and the measured ones. The resulting oil parameters are found in overall good agreement - but still qualitative - with the various released oils. Nonetheless, the inversion method does not work properly for the rapeseed oil slick when higher wind speeds are considered, and this failure is explained. In addition, it can be seen that the results can be applied in an ocean context by comparing the modeled normalized radar cross section (NRCS) in an ocean context (given by the Bragg scattering and the Elfouhaily spectrum) and the measured NRCS.
Citation
Aymeric Mainvis, Vincent Fabbro, Christophe Bourlier, Henri-Jose Mametsa, and Pierre Borderies, "Surface Film Characterization from X-to-k -Band Radar Signal Inversion, a Wind-Wave-Pool Experiment," Progress In Electromagnetics Research B, Vol. 87, 93-110, 2020.
doi:10.2528/PIERB20010604
References

1. Fingas, M. and C. Brown, "Review of oil spill remote sensing," Mar. Pollut. Bull., Vol. 83, 9-23, 2014.
doi:10.1016/j.marpolbul.2014.03.059

2. Leifer, I., W. J. Lehr, D. Simecek-Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Rober, J. Svejkovsky, G. Swayze, and J. Wozencraft, "State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill," Remote Sens. Environ., Vol. 124, 185-209, 2012.
doi:10.1016/j.rse.2012.03.024

3. Jatiault, R., D. Dhont, L. Loncke, and D. Dubucq, "Monitoring of natural oil seepage in the Lower Congo Basin using SAR observations," Remote Sens. Environ., Vol. 191, 258-272, 2017.
doi:10.1016/j.rse.2017.01.031

4. Gade, M. and W. Alpers, "Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters," Sci. Total Environ., Vol. 237–238, 441-448, 1999.
doi:10.1016/S0048-9697(99)00156-4

5. Girard-Ardhuin, F., G. Mercier, F. Collard, and R. Garello, "Operational oil-slick characterization by SAR imagery and synergistic data," IEEE J. Ocean. Eng., Vol. 30, 487-495, 2005.
doi:10.1109/JOE.2005.857526

6. Garcia-Pineda, O., B. Zimmer, M. Howard, W. Pichel, X. Li, and I. R. Macdonald, "Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA)," Can. J. Remote Sens., Vol. 35, 411-421, 2009.
doi:10.5589/m09-035

7. Holt, B. and C. Jones, "Detection of marine slicks with SAR: Scientific and experimental legacy of werner alpers, his students and colleagues," Int. Geosci. Remote Sens. Symp., 1480-1483, 2017.

8. Solberg, A. H., "Remote sensing of ocean oil-spill pollution," Proc. IEEE, Vol. 100, 2931-2945, 2012.
doi:10.1109/JPROC.2012.2196250

9. Angelliaume, S., X. Ceamanos, F. Viallefont-Robinet, R. Baque, P. Deliot, and V. Miegebielle, "Hyperspectral and radar airborne imagery over controlled release of oil at sea," Sensors, Vol. 17, 1-21, 2017.
doi:10.3390/s17081772

10. Alpers, W. and H. Huhnerfuss, "Radar signatures of oil films floating on the sea surface and the marangoni effect," J. Geophys. Res. Ocean., Vol. 93, 3642-3648, 1988.
doi:10.1029/JC093iC04p03642

11. Lombardini, P. P., B. Fiscella, P. Trivero, C. Cappa, and W. Garrett, "Modulation of the spectra of short gravity waves by sea surface films: Slick detection and characterization with a microwave probe," J. Atmos. Ocean. Technol., Vol. 6, 882-890, 1989.
doi:10.1175/1520-0426(1989)006<0882:MOTSOS>2.0.CO;2

12. Huhnerfuss, H., A. Gericke, W. Alpers, R. Theis, V. Wismann, and P. A. Lange, "Classification of sea slicks by multifrequency radar techniques: New chemical insights and their geophysical implications," J. Geophys. Res., Vol. 99, 9835-9845, 1994.
doi:10.1029/93JC03308

13. Gade, M., W. Alpers, H. Huhnerfuss, and P. A. Lange, "Wind wave tank measurements of wave damping and radar cross sections in the presence of monomolecular surface films," J. Geophys. Res., Vol. 103, 3167-3178, 1998.
doi:10.1029/97JC01578

14. Gade, M., W. Alpers, H. Huhnerfuss, H. Masuko, and T. Kobayashi, "Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR," J. Geophys. Res. Ocean., Vol. 103, 18,851-18,866, 1998.
doi:10.1029/97JC01915

15. Ermakov, S. A., "Possibilities of identification of oil films using radar probing of the sea surface," US/EU-Baltic Int. Symp., 1-6, 2008.

16. Sergievskaya, I. and S. A. Ermakov, "On wave damping due to oil films,", 8-13, 2008.

17. Foged, L. J., M. A. Saporetti, E. Jørgensen, T. Voigt, F. Calvano, and D. Tallini, "Measurement and simulation of reflector antenna," 9th Eur. Conf. Antennas Propag., 2015.

18. Boisot, O., A. Laiba, J. C. Lalaurie, and C. A. Guerin, "Dynamical properties of sea surface microwave backscatter at low-incidence: Correlation time and doppler shift," IEEE Trans. Geosci. Remote Sens., 1-11, 2016.

19. Boisot, O., S. Pioch, C. Fatras, G. Caulliez, A. Bringer, P. Borderies, J. C. Lalaurie, and C. A. Guerin, "Ka-band backscattering fromwater surface at small incidence: A wind-wave tank study," J. Geophys. Res. Ocean., 1-25, 2015.

20. Nunziata, F., C. R. de Macedo, A. Buono, D. Velotto, and M. Migliaccio, "On the analysis of a time series of X-band TerraSAR-X SAR imagery over oil seepages," Int. J. Remote Sens., Vol. 40, 3623-3646, 2019.
doi:10.1080/01431161.2018.1547933

21. Hara, T., E. J. Bock, and D. Lyzenga, "In situ measurements of capillary-gravity wave spectra using a scanning laser slope gauge and microwave radars," J. Geophys. Res., Vol. 99, 12,593-12,602, 1994.
doi:10.1029/94JC00531

22. Li, X., F. Nunziata, and O. Garcia, "Oil spill detection from single- and multipolarization SAR imagery," Compr. Remote Sens., 231-248, Elsevier, 2018.

23. Fan, S., V. Kudryavtsev, B. Zhang, W. Perrie, B. Chapron, and A. Mouche, "On C-band quad-polarized synthetic aperture radar properties of ocean surface currents," Remote Sens., Vol. 11, 2321, 2019.
doi:10.3390/rs11192321

24. Elfouhaily, T. M., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res. Ocean., Vol. 102, 15781-15796, 1997.
doi:10.1029/97JC00467

25. Folgerø, K., "Bilinear calibration of coaxial transmission/reflection cells for permittivity measurement of low-loss liquids," Meas. Sci. Technol., Vol. 7, 1260-1269, 1996.
doi:10.1088/0957-0233/7/9/011

26. Friisø, T., Y. Schildberg, O. Rambeau, T. Tjomsland, and J. Sjøblom, "Complex permittivity of crude oils and solutions of heavy crude oil fractions," J. Dispers. Sci. Technol., Vol. 19, 93-126, 1998.
doi:10.1080/01932699808913163

27. Born, M. and E. Wolf, Principles of Optics, 6th Ed., 613-615, Pergamon, London, 1980.

28. Zhu, C., R. H. Byrd, P. Lu, and J. Nocedal, "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization," ACM Trans. Math. Softw., Vol. 23, 550-560, 1997.
doi:10.1145/279232.279236

29. Nash, S. G., "Newton-type minimization via the Lanczos method," SIAM J. Numer. Anal., Vol. 21, 770-788, 1984.
doi:10.1137/0721052

30. Pinel, N. and C. Bourlier, "Modeling of radar scattering from oil films," Int. Radar Conf. Bordeaux Fr., Vol. 1, 1-6, 2009.

31. Pietrapertosa, C., A. Spisni, V. Pancioli, A. Pavan, P. Sterzai, P. Paganini, M. Vellico, A. Monni, and F. Coren, "Hyperspectral images to monitor oil spills in the River Po," Boll. di Geofis. Teor. ed Appl., Vol. 57, 31-42, 2016.

32. Koudogbo, F., P. F. Combes, and H.-J. Mametsa, "Numerical and experimental validations of IEM for bistatic scattering from natural and manmade rough surfaces," Progress In Electromagnetics Research, Vol. 46, 203-244, 2004.
doi:10.2528/PIER03092902