Vol. 84
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-07-07
An Empirical Model of the Effects of Ionospheric Electron Density Variations on HF Radar Processing
By
Progress In Electromagnetics Research B, Vol. 84, 115-134, 2019
Abstract
The High Frequency hybrid radar mode combines sky and surface wave propagation. As all High Frequency radars, it can be impacted by ionospheric instabilities. A behavioral model able to include ionospheric spatial and temporal variations has been implemented to estimate the impact of ionospheric irregularities on radar signal processing and Doppler-distance images. In this work, probabilistic models of the ionospheric fluctuations in the ray tracing have been introduced using the phase path fluctuation only. Based on Shkarofsky's spectral power density, random variations on some parameters of Booker's electron density profile have been performed to generate disturbed electron density profiles. Afterwards, a propagation delay, integrated in the received radar signal, has been calculated in terms of phase path variation. Moreover, the temporal aspect of the ionospheric variations has been macroscopically implemented by a filtering step according to the Total Electron Content variation. Results of this simulation are presented with the corresponding statistics. Doppler and distance distributions have been computed for several filter cut-off frequency values and for different Shkarofsky's spectral power density parameters. At last, the process described above works properly: its results have been successfully compared with actual radar data for this purpose.
Citation
Marie Jose Abi Akl, Florent Jangal, Muriel Darces, and Marc Hélier, "An Empirical Model of the Effects of Ionospheric Electron Density Variations on HF Radar Processing," Progress In Electromagnetics Research B, Vol. 84, 115-134, 2019.
doi:10.2528/PIERB19040204
References

1. Yeh, K. C. and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, Vol. 70, No. 4, 324-360, April 1982.

2. Wagen, J.-F. and K. C. Yeh, "A numerical study of waves reflected from a turbulent ionosphere," Radio Science, Vol. 21, No. 4, 583-604, July–August 1986.
doi:10.1029/RS021i004p00583

3. Zernov, N. N. and B. Lundborg, "The influence of ionospheric electron density fluctuations on HF pulse propagation," Journal of Atmospheric and Terrestrial Physics, Vol. 57, No. 1, 65-73, 1995.
doi:10.1016/0021-9169(93)E0019-6

4. Nickisch, L. J., G. St. John, S. V. Fridman, M. A Hausman, and C. J. Coleman, "HiCIRF: A high-fidelity HF channel simulation," Radio Science, Vol. 47, No. 4, RS0L11, 2012.
doi:10.1029/2011RS004928

5. Jangal, F., P. Dorey, M. Menelle, and N. Bourey, "HF radars and HF propagation simulations," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2692-2693, April 2013.

6. Halim, R. A. and M. D. Seck, "The simulation-based multi-objective evolutionary optimization (SIMEON) framework," Proceedings of the 2011 Winter Simulation Conference (WSC), 2834-2846, Phoenix, AZ, USA, December 2011.

7. Booker, H. G., "Fitting of multi-region ionospheric profiles of electron density by a single analytic function of height," Journal of Atmospheric and Terrestrial Physics, Vol. 39, No. 5, 619-623, 1977.
doi:10.1016/0021-9169(77)90072-1

8. Garner, T. W., B. T. Taylor, T. L. Gaussiran, W. R. Coley, and M. R. Hairston, "On the distribution of ionospheric electron density observations," Space Weather, Vol. 3, No. 10, 2005.
doi:10.1029/2005SW000169

9. Garner, T. W., B. T. Taylor, T. L. Gaussiran, W. R. Coley, M. R. Hairston, and F. J. Rich, "Statistical behavior of the topside electron density as determined from DMSP observations: A probabilistic climatology," Journal of Geophysical Research: Space Physics, Vol. 115, No. A7, 2010.

10. Yeh, K. C. and C. H. Liu, Theory of Ionospheric Waves, Academic Press, 1972.

11. Robinson, I. and P. L. Dyson, "Effects of ionospheric irregularities on radio waves — I. Phase path changes," Journal of Atmospheric and Terrestrial Physics, Vol. 37, No. 11, 1459-1467, 1975.
doi:10.1016/0021-9169(75)90076-8

12. Dyson, P. L. and J. A. Bennett, "A model of the vertical distribution of the electron concentration in the ionosphere and its application to oblique propagation studies," Journal of Atmospheric and Terrestrial Physics, Vol. 50, 251-262, March 1988.
doi:10.1016/0021-9169(88)90074-8

13. Fejer, B. G. and M. C. Kelley, "Ionospheric irregularities," Reviews of Geophysics and Space Physics, Vol. 18, 401-454, May 1980.
doi:10.1029/RG018i002p00401

14. Dyson, P. L., "Relationships between the rate of change of phase path/Doppler shift/and angle of arrival," Journal of Atmospheric and Terrestrial Physics, Vol. 37, 1151-1154, August 1975.
doi:10.1016/0021-9169(75)90162-2

15. Jouaust, R., "L'ionosphere et les evanouissements brusques des ondes radioelecriques courtes," J. Phys. Radium, Vol. 10, No. 6, 251-259, 1939.
doi:10.1051/jphysrad:01939001006025100

16. Snyder, W. and R. A. Helliwell, "Universal wave polarization chart for the magneto-ionic theory," Journal of Geophysical Research, Vol. 57, No. 1, 73-84, 1952.
doi:10.1029/JZ057i001p00073

17. Hanuise, C., J. P. Villain, D. Gresillon, B. Cabrit, R. A. Greenwald, and K. B. Bakerl, "Interpretation Of HF radar ionospheric Doppler spectra by collective wave scattering-theory," Annales Geophysicae, Vol. 11, No. 1, 29-39, 1993.

18. Gherm, V. E., N. N. Zernov, H. J. Strangeways, and M. Darnell, "Scattering functions for wideband HF channels," 2000 Eighth International Conference on HF Radio Systems and Techniques, 341-345, Guildford, UK, July 2000.

19. AbiAkl, M. J., F. Jangal, M. Darces, and M. Helier, "Behavioral model of ionospheric effects in HF radars," 2017 11th European Conference on Antennas and Propagation (EUCAP), 1254-1257, Paris, France, March 2017.
doi:10.23919/EuCAP.2017.7928758

20. AbiAkl, M. J., F. Jangal, M. Darces, and M. Helier, "Modelling the ionospheric effects in HF radar long term integration," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Davos, Switzerland, April 2016.

21. AbiAkl, M. J., F. Jangal, M. Darces, and M. Helier, "Modele comportemental pour radars HF d'une ionosphere perturbee," Conference JNM 2017, 20emes Journees Nationales Micro-Ondes, Saint-Malo, France, May 2017.

22. AbiAkl, M. J., F. Jangal, M. Darces, and M. Helier, "Ionospheric clutter simulator for high frequency radars wave propagation," Conference IEEE APS/URSI 2017, IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, San Diego, United States, July 2017.

23. Rawer, K., D. Bilitza, and S. Ramakrishnan, "Goals and status of the international reference ionosphere," Reviews of Geophysics, Vol. 16, No. 2, 177-181, 1978.
doi:10.1029/RG016i002p00177

24. Gavin, H. P., Random processes, correlation, and power spectral density, Duke University, 2016.

25. Shkarofsky, I. P., "Generalized turbulence space-correlation and wave-number spectrum-function pairs," Canadian Journal of Physics, Vol. 46, No. 19, 2133-2153, 1968.
doi:10.1139/p68-562

26. Zernov, N. N., "Scattering of waves of the SW range in oblique propagation in the ionosphere," Radiophysics and Quantum Electronics, Vol. 23, No. 2, 109-114, 1980.
doi:10.1007/BF01033579

27. Xu, Z. W. and J. Wu, "On the mutual coherence function and mean arrival time of radio propagation through the turbulent ionosphere," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2622-2629, August 2008.
doi:10.1109/TAP.2008.927508

28. Jandieri, G., Z. Diasamidze, and M. Diasamidze, "Scintillation spectra of scattered electromagnetic waves in turbulent magnetized plasma," Journal of Basic and Applied Physics, Vol. 2, 224-234, November 2013.

29. Ning, B., G. Li, and H. Yuan, "Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region," Earth Planets Space, Vol. 59, 279285, May 2007.

30. Martyn, D. F., "The propagation of medium radio waves in the ionosphere," Proceedings of the Physical Society, Vol. 47, No. 2, 323-339, March 1935.
doi:10.1088/0959-5309/47/2/311