Vol. 84
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-07-17
PCE-Based Approach to Worst-Case Scenario Analysis in Wireless Telecommunication Systems
By
Progress In Electromagnetics Research B, Vol. 84, 153-170, 2019
Abstract
In the paper, we present a novel PCE-based approach for the effective analysis of worst-case scenario in a wireless telecommunication system. Usually, in such analysis derivation of polynomial chaos expansion (PCE meta-model) of a considered EM field function for one precise set of probability densities of random variables does not provide enough information. Consequently, a number of PCE meta-models of the EM field function should be derived, each for the different joint probability density of a vector of random variables, e.g., associated with different mean (nominal) values of random variables. The general polynomial chaos (gPC) approach requires numerical calculations for each PCE meta-model derivation. In order to significantly decrease the time required to derive all of the PCE meta-models, the novel approach has been introduced. It utilizes the novel so-called primary approximation and the novel analytical formulas. They significantly decrease the number of numerical calculations required to derive all of the PCE meta-models compared with the gPC approach. In the paper, we analyze the stochastic EM fields distributions in a telecommunication system in a spatial domain. For this purpose, analysis of uncertainties associated with a propagation channel as well as with transmitting and receiving antennas was introduced. We take advantage of a ray theory in our analysis. This allows us to provide the novel method for rapid calculation of a PCE meta-model of a telecommunication system transfer function by using the separate PCE meta-models associated with antennas and a propagation channel.
Citation
Piotr Gorniak, and Wojciech Bandurski, "PCE-Based Approach to Worst-Case Scenario Analysis in Wireless Telecommunication Systems," Progress In Electromagnetics Research B, Vol. 84, 153-170, 2019.
doi:10.2528/PIERB19032004
References

1. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," AEUE Elsevier — International Journal of Electronics and Communications, Vol. 70, No. 12, 1645-1650, 2016.
doi:10.1016/j.aeue.2016.10.003

2. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "A new planar broadband antenna based on meandered line loops for portable wireless communication devices," Radio Science, Vol. 51, No. 7, 1109-1117, 2016.
doi:10.1002/2016RS005973

3. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas and Propagation, Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069

4. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 3, 217-225, 2016.
doi:10.1002/mmce.20956

5. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Dual-band RFID tag antenna based on the hilbert-curve fractal for HF and UHF applications," IET Circuits, Devices and Systems, Vol. 10, No. 2, 140-146, 2016.
doi:10.1049/iet-cds.2015.0221

6. Schafer, T. M. and W. Wiesbeck, "Simulation of radiowave propagation in hospitals based on FDTD and ray-optical methods," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 8, 2381-2388, 2005.
doi:10.1109/TAP.2005.852300

7. Hosseini Tabatabaei, S. A., M. Fleury, N. N. Qadri, and M. Ghanbari, "Improving propagation modeling in urban environments for vehicular ad hoc networks," IEEE Trans. on Intelligent Transportation Systems, Vol. 12, No. 3, 769-783, 2011.
doi:10.1109/TITS.2011.2143707

8. Lertsirisopon, N., G. S. Ching, M. Ghoraishi, J.-I. Takada, I. Ida, and Y. Oishi, "Investigation of non-specular scattering by comparing directional channel characteristics from microcell measurement and simulation," IET Microwaves, Antennas and Propagation, Vol. 2, No. 8, 913-921, 2008.
doi:10.1049/iet-map:20070333

9. Ozgun, O. and M. Kuzuoglu, "Monte Carlo-based characteristic basis finite-element method (MCCBFEM) for numerical analysis of scattering from objects on/above rough sea surfaces," IEEE Trans. on Geoscience and Remote Sensing, Vol. 50, No. 3, 769-783, 2012.
doi:10.1109/TGRS.2011.2162650

10. Wagner, R. L., J. Song, and W. C. Chew, "Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 2, 235-245, 1997.
doi:10.1109/8.560342

11. Wiener, N., "The homogeneous chaos," American Journal of Mathematics, Vol. 60, No. 4, 897-936, 1938.
doi:10.2307/2371268

12. Xiu, D., Numerical Methods for Stochastic Computation. A Spectral Method Approach, Princton University Press, New Jersey, 2010.
doi:10.2307/j.ctv7h0skv

13. Edwards, R. S., A. C. Marvin, and S. J. Porter, "Uncertainty analyses in the finite-difference time-domain method," IEEE Trans. Electromagn. Compat., Vol. 52, No. 1, 155-163, 2010.
doi:10.1109/TEMC.2009.2034645

14. Kersaudy, P., S. Mostarshedi, S. Sudret, and O. Picon, "Stochastic analysis of scattered field by building facades using polynomial chaos," IEEE Trans. on Antennas and Propagation, Vol. 62, No. 12, 6382-6393, 2014.
doi:10.1109/TAP.2014.2359478

15. Boeykens, F., H. Rogieri, and L. Vallozzi, "An efficient technique based on polynomial chaos to model the uncertainty in the resonance frequency of textile antennas due to bending," IEEE Trans. on Antennas and Propagation, Vol. 62, No. 3, 1253-1260, 2014.
doi:10.1109/TAP.2013.2294021

16. Larbi, M., I. S. Stievano, F. Canavero, and P. Besnier, "Identification of main factors of uncertainty in a microstrip line network," Progress In Electromagnetics Research, Vol. 162, 61-72, 2018.
doi:10.2528/PIER18040607

17. Haarscher, A., P. De Doncker, and D. Lautru, "Uncertainty propagation and sensitivity analysis in ray-tracing simulations," Progress In Electromagnetics Research M, Vol. 21, 149-161, 2011.
doi:10.2528/PIERM11090103

18. Eldred, M. S., "Design under uncertainty employing stochastic expansion methods," International Journal for Uncertainty Quantification, Vol. 1, No. 2, 119-146, 2011.
doi:10.1615/Int.J.UncertaintyQuantification.v1.i2.20

19. Xiu, D., "Fast numerical methods for stochastic computations: A review," Commun. Comput. Phys., Vol. 5, No. 2–4, 242-272, 2009.

20. Gorniak, P. and W. Bandurski, "A new approach to polynomial chaos expansion for stochastic analysis of EM wave propagation in an UWB channel," Wireless Days, Toulouse, March 23–25, 2016.

21. Gorniak, P. and W. Bandurski, "Universal approach to polynomial chaos expansion for stochastic analysis of EM field propagation on convex obstacles in an UWB channel," 12th European Conference on Antennas and Propagation, EuCAP 2016, Davos, April 10–14, 2016.

22. Gorniak, P., "An application of universal polynomial chaos expansion to numerical stochastic simulations of an UWB EM wave propagation," 11th European Conference on Antennas and Propagation, EuCAP 2017, Paris, March 20–24, 2017.

23. Spina, D., D. Dhaene, and L. Knockaert, "Polynomial chaos-based macromodeling of general linear multiport systems for time-domain analysis," IEEE Trans. Microwave Theory and Techniques, Vol. 65, No. 5, 1422-1433, 2017.
doi:10.1109/TMTT.2016.2642104

24. Marelli, S. and B. Sudret, "UQLab user manual --- Polynomial chaos expansions," Report UQLab- V1.0-104, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, 2017.

25. Bella, T. and J. Reis, "The spectral connection matrix for any change of basis within the classical real orthogonal polynomials," Mathematics 2015, Vol. 3, No. 2, 382-397, 2015.

26. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, London, 2003.

27. Forrey, R. C. and J. Reis, "Computing the hypergeometric function," Journal of Computational Physics, Vol. 137, No. 1, 79-100, 1997.
doi:10.1006/jcph.1997.5794

28. McNamara, D. A., Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, Boston, 1990.

29. Koutitas, G. and C. Tzaras, "A UTD solution for multiple rounded surfaces," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 4, 1277-1283, 2006.
doi:10.1109/TAP.2006.872675