Vol. 84

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-04-02

Comparison of Algorithms and Input Vectors for Sea-Ice Classification with L-Band PolSAR Data

By Kai-Shiun Yang and Jean-Fu Kiang
Progress In Electromagnetics Research B, Vol. 84, 1-21, 2019
doi:10.2528/PIERB19010406

Abstract

Two unsupervised methods, fuzzy c-means (FCM) and $k$-means, as well as three supervised methods, support vector machine (SVM), neural network (NN), and convolutional neural network (CNN), are applied to classify sea-ice type of first-year ice (FYI), multi-year ice (MYI) and open water, by using L-band polarimetric synthetic aperture radar (PolSAR) images in winter and advanced-melt phases, respectively. Different input vectors, pending on different scenarios, are also proposed to increase the accuracy rate. The efficacy of different algorithms in conjunction with different input vectors are analyzed and related to the underlying physical mechanisms.

Citation


Kai-Shiun Yang and Jean-Fu Kiang, "Comparison of Algorithms and Input Vectors for Sea-Ice Classification with L-Band PolSAR Data," Progress In Electromagnetics Research B, Vol. 84, 1-21, 2019.
doi:10.2528/PIERB19010406
http://jpier.org/PIERB/pier.php?paper=19010406

References


    1. Lindsay, R. and A. Schweiger, "Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations," Cryosphere, Vol. 9, No. 1, 269-283, 2015.
    doi:10.5194/tc-9-269-2015

    2. Serreze, M. C. and J. Stroeve, "Arctic sea ice trends, variability and implications for seasonal ice forecasting," Phil. Trans. R. Soc. A, Vol. 373, No. 2045, 2015.

    3. Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, "Arctic sea ice decline: Faster than forecast," Geophys. Res. Lett., Vol. 34, No. 9, 2007.

    4. Maslanik, J., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, "A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss," Geophys. Res. Lett., Vol. 34, No. 24, 2007.

    5. Arkett, M., D. Flett, R. De Abreu, P. Clemente-Colon, J. Woods, and B. Melchior, "Evaluating ALOS-PALSAR for ice monitoring --- What can L-band do for the North American ice service?," IEEE Int. Geosci. Remote Sensing Symp., Vol. 5, 2008.

    6. Howell, S. E. and J. Yackel, "A vessel transit assessment of sea ice variability in the western Arctic, 1969–2002: Implications for ship navigation," Canadian J. Remote Sensing, Vol. 30, No. 2, 205-215, 2004.

    7. Dierking, W. and T. Busche, "Sea ice monitoring by L-band SAR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 4, 957-970, 2006.

    8. Zakhvatkina, N. Y., V. Y. Alexandrov, O. M. Johannessen, S. Sandven, and I. Y. Frolov, "Classification of sea ice types in ENVISAT synthetic aperture radar images," IEEE Trans. Geosci. Remote Sensing, Vol. 51, No. 5, 2587-2600, 2013.

    9. Canadian ice service digital archive-regional charts: History, accuracy, and caveats, Rep. 00-02, Ballicater Consulting Ltd, Ottawa, 2006.

    10. Onstott, R. G., "SAR and scatterometer signatures of sea ice," Microwave Remote Sensing Sea Ice, Vol. 68, 73-104, 1992.

    11. Drunkwater, M., R. Hosseinmostafa, and P. Gogineni, "C-band backscatter measurements of winter sea-ice in the Weddell Sea, Antarctica," Int. J. Remote Sensing, Vol. 16, No. 17, 3365-3389, 1995.

    12. Geldsetzer, T., J. B. Mead, J. J. Yackel, R. K. Scharien, and S. E. Howell, "Surface-based polarimetric C-band scatterometer for field measurements of sea ice," IEEE Trans. Geosci. Remote Sensing, Vol. 45, No. 11, 3405-3416, 2007.

    13. Casey, J. A., S. E. Howell, A. Tivy, and C. Haas, "Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season," Remote Sensing Environment, Vol. 174, 314-328, 2016.

    14. Barber, D. G., J. Yackel, and J. Hanesiak, "Sea ice, RADARSAT-1 and Arctic climate processes: A review and update," Canadian J. Remote Sensing, Vol. 27, No. 1, 51-61, 2001.

    15. Dammann, D. O., et al., "Traversing sea ice- Linking surface roughness and ice trafficability through SAR polarimetry and interferometry," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing, Vol. 11, No. 2, 416-433, 2018.

    16. Isleifson, D., R. J. Galley, D. G. Barber, J. C. Landy, A. S. Komarov, and L. Shafai, "A study on the C-band polarimetric scattering and physical characteristics of frost flowers on experimental sea ice," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 3, 1787-1798, 2014.

    17. Dierking, W., "Mapping of different sea ice regimes using images from Sentinel-1 and ALOS synthetic aperture radar," IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 3, 1045-1058, 2010.

    18. Johansson, A. M., C. Brekke, G. Spreen, and J. A. King, "X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring," Remote Sensing Environment, Vol. 204, 162-180, 2018.

    19. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 2, 498-518, 1996.

    20. Sandven, S., O. M. Johannessen, M. W. Miles, L. H. Pettersson, and K. Kloster, "Barents Sea seasonal ice zone features and processes from ERS 1 synthetic aperture radar: Seasonal Ice Zone Experiment 1992," J. Geophys. Res.: Oceans, Vol. 104, No. C7, 1999.

    21. Alexandrov, V., S. Sandven, K. Kloster, L. Bobylev, and L. Zaitsev, "Comparison of sea ice signatures in okean and RADARSAT radar images for the northeastern Barents sea," Canadian J. Remote Sensing, Vol. 30, No. 6, 882-892, 2004.

    22. Liu, H., H. Guo, and L. Zhang, "SVM-based sea ice classification using textural features and concentration from RADARSAT-2 Dual-Pol ScanSAR data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 4, 1601-1613, 2015.

    23. Zhang, Z., H. Wang, F. Xu, and Y.-Q. Jin, "Complex-valued convolutional neural network and its application in polarimetric SAR image classification," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 12, 7177-7188, 2017.

    24. Zhang, L., W. Ma, and D. Zhang, "Stacked sparse autoencoder in PolSAR data classification using local spatial information," IEEE Geosci. Remote Sensing Lett., Vol. 13, No. 9, 1359-1363, 2016.

    25. Lee, J.-S., M. R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution," Int. J. Remote Sensing, Vol. 15, No. 11, 2299-2311, 1994.

    26. Lee, J.-S., M. R. Grunes, T. L. Ainsworth, L.-J. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification using polarimetric decomposition and the complex Wishart classifier," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 5, 2249-2258, 1999.

    27. Kersten, P. R., J.-S. Lee, and T. L. Ainsworth, "Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering," IEEE Trans. Geosci. Remote Sensing, Vol. 43, No. 3, 519-527, 2005.

    28. Fan, J. and J. Wang, "Polarimetric SAR image segmentation based on spatially constrained kernel fuzzy C-means clustering," IEEE OCEANS, 2015.

    29. Doulgeris, A. P., S. N. Anfinsen, and T. Eltoft, "Automated non-gaussian clustering of polarimetric synthetic aperture radar images," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 10, 3665-3676, 2011.

    30. Soh, L.-K. and C. Tsatsoulis, "Texture analysis of SAR sea ice imagery using gray level cooccurrence matrices," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 2, 780-795, 1999.

    31. Singha, S., M. Johansson, N. Hughes, S. M. Hvidegaard, and H. Skourup, "Arctic sea ice characterization using spaceborne fully polarimetric L-, C-, and X-band SAR with validation by airborne measurements," IEEE Trans. Geosci. Remote Sensing, Vol. 56, No. 7, 3715-3734, 2018.

    32. Zhang, Y.-D. and L. N. Wu, "Crop classification by forward neural network with adaptive chaotic particle swarm optimization," Sensors, Vol. 11, 4721-4743, 2011, doi:10.3390/s110504721.

    33. Wang, S.-H., J. D. Sun, P. Phillips, G. H. Zhao, and Y.-D. Zhang, "Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units," J. Real-Time Image Proc., Vol. 15, 631-642, 2018.

    34. Watts, S., "Radar sea clutter: Recent progress and future challenges," IEEE Int. Conf. Radar, 2008.

    35. Fois, F., P. Hoogeboom, F. Le Chevalier, and A. Stoffelen, "Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds," IEEE Trans. Geosci. Remote Sensing, Vol. 53, No. 9, 5009-5020, 2015.

    36. Valenzuela, G. R., "Theories for the interaction of electromagnetic and oceanic waves: A review," Boundary-Layer Meteorology, Vol. 13, No. 1–4, 61-85, 1978.

    37. Ulaby, F., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, from Theory to Applications, Vol. 3, Artech House, 1986.

    38. Komarov, A. S., J. C. Landy, S. A. Komarov, and D. G. Barber, "Evaluating scattering contributions to C-band radar backscatter from snow-covered first-year sea ice at the winter-spring transition through measurement and modeling," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 10, 5702-5718, 2017.

    39. Livingstone, C. E., K. P. Singh, and A. L. Gray, "Seasonal and regional variations of active/passive microwave signatures of sea ice," IEEE Trans. Geosci. Remote Sensing, No. 2, 159-173, 1987.

    40. http://iceweb1.cis.ec.gc.ca/Archive/?lang=en,.

    41. https://earth.esa.int/web/guest/data-access,.

    42. https://www.asf.alaska.edu,.

    43. http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm,.

    44. https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers1,.

    45. Meadows, P., D. Esteban, and P. Mancini, "The ERS SAR performances: An update," Euro. Space Agency, Vol. 450, 79-84, 2000.

    46. Lee, J.-S. and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications, CRC Press, 2009.

    47. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. Geosci. Remote Sensing, Vol. 36, No. 3, 963-973, 1998.

    48. Minchew, B., C. E. Jones, and B. Holt, "Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-band synthetic aperture radar," IEEE Trans. Geosci. Remote Sensing, Vol. 50, No. 10, 3812-3830, 2012.

    49. Lang, R., Y. Zhou, C. Utku, and D. Le Vine, "Accurate measurements of the dielectric constant of seawater at L band," Radio Science, Vol. 51, No. 1, 2-24, 2016.

    50. Joughin, I. R., D. P. Winebrenner, and D. B. Percival, "Probability density functions for multilook polarimetric signatures," IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 3, 562-574, 1994.

    51. Anfinsen, S. N. and T. Eltoft, "Application of the matrix-variate Mellin transform to analysis of polarimetric radar images," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 6, 2281-2295, 2011.

    52. Nicolas, J.-M. and S. N. Anfinsen, "Introduction to second kind statistics: Application of logmoments and log-cumulants to the analysis of radar image distributions," Trait. Signal, Vol. 19, No. 3, 139-167, 2002.

    53. Tison, C., J.-M. Nicolas, F. Tupin, and H. Maıtre, "A new statistical model for Markovian classification of urban areas in high-resolution SAR images," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 10, 2046-2057, 2004.

    54. Skrunes, S., C. Brekke, and A. P. Doulgeris, "Characterization of low-backscatter ocean features in dual-copolarization SAR using log-cumulants," IEEE Geosci. Remote Sensing Lett., Vol. 12, No. 4, 836-840, 2015.

    55. Derrode, S., G. Mercier, J.-M. Le Caillec, and R. Garello, "Estimation of sea-ice SAR clutter statistics from Pearson's system of distributions," IEEE Int. Geosci. Remote Sensing Symp., Vol. 1, 190-192, 2001.

    56. Hu, Y., J. Fan, and J. Wang, "Classification of PolSAR images based on adaptive nonlocal stacked sparse autoencoder," IEEE Geosci. Remote Sensing Lett., No. 99, 2018.

    57. Liu, C., W. Liao, H.-C. Li, K. Fu, and W. Philips, "Unsupervised classification of multilook polarimetric sar data using spatially variant Wishart mixture model with double constraints," IEEE Trans. Geosci. Remote Sensing, Vol. 56, No. 10, 5600-5613, 2018.

    58. Aldenhoff, W., C. Heuze, and L. E. Eriksson, "Comparison of ice/water classification in Fram strait from C-and L-band SAR imagery," Ann. Glaciology, Vol. 59, No. 76, 112-123, 2018.

    59. Badrinarayanan, V., A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation," IEEE Trans. Pattern Analysis Machine Intell., Vol. 39, No. 12, 2481-2495, 2017.

    60. Hsu, C.-W., et al., "A practical guide to support vector classification,", https://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf, 2003.

    61. Zheng, Y., B. Jeon, D. Xu, Q. Wu, and H. Zhang, "Image segmentation by generalized hierarchical fuzzy c-means algorithm," J. Intell. Fuzzy Syst., Vol. 28, No. 2, 961-973, 2015.

    62. Dabboor, M., J. Yackel, M. Hossain, and A. Braun, "Comparing matrix distance measures for unsupervised PolSAR data classification of sea ice based on agglomerative clustering," Int. J. Remote Sensing, Vol. 34, No. 4, 1492-1505, 2013.

    63. Arthur, D. and S. Vassilvitskii, "k-means++: The advantages of careful seeding," Annual ACMSIAM Symp. Discrete Algorithms, 1027-1035, 2007.

    64. Zhang, Y., M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," IEEE Trans. Med. Imag., Vol. 20, No. 1, 45-57, 2001.

    65. Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, Ch. 9.11, MIT Press, 2016.