Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-02-19

Accurate Calculation of the Power Transfer and Efficiency in Resonator Arrays for Inductive Power Transfer

By Jose Alberto, Ugo Reggiani, Leonardo Sandrolini, and Helena Albuquerque
Progress In Electromagnetics Research B, Vol. 83, 61-76, 2019
doi:10.2528/PIERB18120406

Abstract

This paper studies the power transfer characteristics of a resonator array for inductive power transfer by means of the accurate analytical solution of its circuit model. Through the mathematical inversion of a tridiagonal matrix, it is possible to obtain closed-form expressions for the current in each resonator and consequently expressions for the power transfer and efficiency of the system. The method can be applied to a resonator array powering a load at the end of the array or a receiver facing the array at any position. With the expressions obtained, it is possible not only to achieve a better understanding of the power transfer characteristics in resonator arrays but also to obtain the conditions for maximum power transfer or maximum efficiency, for several conditions and parameters of the system. A prototype of a stranded-wire resonator array powered by a resonant inverter, capable of delivering power to a load from 65 W to 90 W with efficiency values between 63% and 88%, was built in order not only to validate the expressions obtained but also to show their practical applicability and demonstrate that these arrays can be used for higher power transfer applications.

Citation


Jose Alberto, Ugo Reggiani, Leonardo Sandrolini, and Helena Albuquerque, "Accurate Calculation of the Power Transfer and Efficiency in Resonator Arrays for Inductive Power Transfer," Progress In Electromagnetics Research B, Vol. 83, 61-76, 2019.
doi:10.2528/PIERB18120406
http://jpier.org/PIERB/pier.php?paper=18120406

References


    1. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Rev.: Energy and Environment, Vol. 1, No. 3, 337-346, 2012.
    doi:10.1002/wene.43

    2. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Trans. on Ind. Electron., Vol. 56, No. 8, 3060-3068, Aug. 2009.
    doi:10.1109/TIE.2009.2023633

    3. Ahmad, A., M. S. Alam, and R. Chabaan, "A comprehensive review of wireless charging technologies for electric vehicles," IEEE Trans. Transport. Electrific., Vol. 4, No. 1, 38-63, Mar. 2018.
    doi:10.1109/TTE.2017.2771619

    4. Ranum, B. T., N. W. D. E. Rahayu, and A. Munir, "Development of wireless power transfer receiver for mobile device charging," The 2nd IEEE Conf. on Power Eng. and Renewable Energy (ICPERE) 2014, 48-51, Dec. 2014.
    doi:10.1109/ICPERE.2014.7067237

    5. Xue, R. F., K. W. Cheng, and M. Je, "High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 60, No. 4, 867-874, Apr. 2013.
    doi:10.1109/TCSI.2012.2209297

    6. Liu, Z., Z. Chen, Y. Guo, and Y. Yu, "A novel multi-coil magnetically-coupled resonance array for wireless power transfer system," 2016 IEEE Wireless Power Transfer Conf. (WPTC), 1-3, May 2016.

    7. Zhong, W., C. K. Lee, and S. Y. R. Hui, "General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 261-270, Jan. 2013.
    doi:10.1109/TIE.2011.2171176

    8. Zhang, X., S. L. Ho, and W. N. Fu, "Quantitative design and analysis of relay resonators in wireless power transfer system," IEEE Trans. Magn., Vol. 48, No. 11, 4026-4029, Nov. 2012.
    doi:10.1109/TMAG.2012.2202883

    9. Puccetti, G., C. J. Stevens, U. Reggiani, and L. Sandrolini, "Experimental and numerical investigation of termination impedance effects in wireless power transfer via metamaterial," Energies, Vol. 8, No. 3, 1882-1895, 2015.
    doi:10.3390/en8031882

    10. Monti, G., L. Corchia, L. Tarricone, and M. Mongiardo, "A network approach for wireless resonant energy links using relay resonators," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 10, 3271-3279, Oct. 2016.
    doi:10.1109/TMTT.2016.2601092

    11. Alberto, J., U. Reggiani, and L. Sandrolini, "Circuit model of a resonator array for a WPT system by means of a continued fraction," Proc. 2016 IEEE 2nd Int. Forum on Research and Technol. for Society and Ind. Leveraging a Better Tomorrow (RTSI), 1-6, Bologna, Italy, Sept. 2016.

    12. Alberto, J., G. Puccetti, G. Grandi, U. Reggiani, and L. Sandrolini, "Experimental study on the termination impedance effects of a resonator array for inductive power transfer in the hundred kHz range," Proc. 2015 IEEE Wireless Power Transfer Conf. (WPTC 2015), 1-4, Boulder, CO, USA, May 2015.

    13. Alberto, J., U. Reggiani, and L. Sandrolini, "Magnetic near field from an inductive power transfer system using an array of coupled resonators," 2016 Asia-Pacific Int. Symp. on Electromagn. Compat. (APEMC), Vol. 01, 876-879, May 2016.
    doi:10.1109/APEMC.2016.7522897

    14. Alberto, J., U. Reggiani, L. Sandrolini, and H. Albuquerque, "Fast calculation and analysis of the equivalent impedance of a wireless power transfer system using an array of magnetically coupled resonators," Progress In Electromagnetics Research B, Vol. 80, 101-112, 2018.
    doi:10.2528/PIERB18011704

    15. Stevens, C. J., "Magnetoinductive waves and wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6182-6190, Nov. 2015.
    doi:10.1109/TPEL.2014.2369811

    16. Zhang, Y., Z. Zhao, and K. Chen, "Frequency-splitting analysis of four-coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2436-2445, Jul. 2014.
    doi:10.1109/TIA.2013.2295007

    17. Solymar, L. and E. Shamonina, Waves in Metamaterials, OUP Oxford, 2009.

    18. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. on Electromagn. Compat., Vol. 60, No. 6, 1865-1872, Dec. 2018.
    doi:10.1109/TEMC.2018.2790265

    19. Fonseca, C. D. and J. Petronilho, "Explicit inverse of a tridiagonal k-toeplitz matrix," Numerische Mathematik, Vol. 100, No. 3, 457-482, 2005.
    doi:10.1007/s00211-005-0596-3

    20. Wang, C.-S., O. H. Stielau, and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Trans. Ind. Electron., Vol. 52, No. 5, 1308-1314, Oct. 2005.
    doi:10.1109/TIE.2005.855672

    21. Alberto, J., U. Reggiani, and L. Sandrolini, "Study of the conducted emissions of an ipt system composed of an array of magnetically coupled resonators," Proc. 2017 IEEE Int. Symp. on Electromagn. Compat. Signal/Power Integrity (EMCSI), 623-628, Aug. 2017.
    doi:10.1109/ISEMC.2017.8077943

    22. Kazimierczuk, M. K., "Class d voltage-switching mosfet power amplifier," IEE Proceedings BElectric Power Applications, Vol. 138, No. 6, 285-296, IET, 1991.
    doi:10.1049/ip-b.1991.0035

    23. Kazimierczuk, M. and D. Czarkowski, Resonant Power Converters, Wiley, 2012.

    24. Zhong, W. X., C. K. Lee, and S. Y. Hui, "Wireless power domino-resonator systems with noncoaxial axes and circular structures," IEEE Trans. Power Electron., Vol. 27, No. 11, 4750-4762, Nov. 2012.
    doi:10.1109/TPEL.2011.2174655