Vol. 73
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-03-24
A Computational Study Using Time Reversal Focusing for Hyperthermia Treatment Planning
By
Progress In Electromagnetics Research B, Vol. 73, 117-130, 2017
Abstract
In hyperthermia treatment planning (HTP) the goal is to find the amplitudes and phases of antennas in the applicator to efficiently heat the tumor. To do this prior information regarding tumor characteristics such as the size, position and geometry, in addition to an exact model of the hyperthermia applicator is needed. Based on this information, the optimal frequency of operation can be determined. In this paper the optimum frequency for hyperthermia treatment based on the tumor and applicator characteristics, using time reversal as the focusing technique, is studied. As prior information, we consider tumor size and position, the number of the antennas in the applicator and the frequency characteristics. The obtained optimal frequency range is found using hyperthermia quality indicator values calculated from simulations. We also determine the optimum position of the virtual source in the initial step of the time reversal method to increase the quality of the treatment.
Citation
Pegah Takook, Hana Dobsicek Trefna, Xuezhi Zeng, Andreas Fhager, and Mikael Persson, "A Computational Study Using Time Reversal Focusing for Hyperthermia Treatment Planning," Progress In Electromagnetics Research B, Vol. 73, 117-130, 2017.
doi:10.2528/PIERB16111605
References

1. Cihoric, N., A. Tsikkinis, G. van Rhoon, H. Crezee, D. M. Aebersold, S. Bodis, et al. "Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry," Int. J. Hyperthermia, Vol. 31, No. 6, 609-614, 2015.
doi:10.3109/02656736.2015.1040471

2. Datta, N. R., S. G. Ordonez, U. S. Gaipl, M. M. Paulides, H. Crezee, J. Gellermann, D. Marder, E. Puric, and S. Bodis, "Local hyperthermia combined with radiotherapy and-or chemotherapy: Recent advances and promises for the future," Cancer Treat Rev., Vol. 41, No. 9, 742-753, Nov. 2015, doi: 10.1016/j.ctrv.2015.05.009, Epub 2015 May 27.
doi:10.1016/j.ctrv.2015.05.009

3. Lee, H. K., A. G. Antell, C. A. Perez, et al. "Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: Prognostic factors in 196 tumors," Int. J. Radiat. Oncol. Biol. Phys., Vol. 40, 365-375, 1998.
doi:10.1016/S0360-3016(97)00740-2

4. Franckena, M., D. Fatehi, M. de Bruijne, et al. "Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia," Eur. J. Cancer, Vol. 45, No. 11, 1969-1978, Jul. 2009.
doi:10.1016/j.ejca.2009.03.009

5. Turner, P. F., A. Tumeh, and T. Schaefermeyer, "BSD-2000 approach for deep local and regional hyperthermia: Physics and technology," Strahlenther Onkol., Vol. 165, 738-741, 1989.

6. Crezee, J., P. M. A. van Haaren, H. Westendorp, M. de Greef, H. P. Kok, J. Wiersma, et al. "Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: A preclinical study," Int. J. Hyperth., Vol. 25, 581-592, 2009.
doi:10.3109/02656730903213374

7. Paulides, M. M., J. F. Bakker, E. Neufeld, J. van der Zee, P. P. Jansen, P. C. Levendag, and G. C. van Rhoon, "The HYPERcollar: A novel applicator for hyperthermia in the head and neck," Int. J. Hyperth., Vol. 23, 567-576, 2007.
doi:10.1080/02656730701670478

8. Togni, P., Z. Rijnen, W. C. Numan, R. F. Verhaart, J. F. Bakker, G. C. van Rhoon, and M. M. Paulides, "Electromagnetic redesign of the HYPERcollar applicator: Toward improved deep local head-and-neck hyperthermia," Phys. Med. Biol., Vol. 58, No. 17, 5997-6009, 2013.
doi:10.1088/0031-9155/58/17/5997

9. Dobsıcek Trefna, H., J. Vrba, and M. Persson, "Time-reversal focusing in microwave hyperthermia for deep-seated tumors," Phys. Med. Biol., Vol. 55, No. 8, Apr. 2010.

10. Converse, M., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2169-2180, 2006.
doi:10.1109/TMTT.2006.872790

11. Dobsıcek Trefna, H., P. Togni, R. Shiee, J. Vrba, and M. Persson, "Design of a wide-band multichannel system for time reversal hyperthermia," Int. J. Hyperthermia., Vol. 28, No. 2, 175, 2012.
doi:10.3109/02656736.2011.641655

12. Dobsıcek Trefna, H., M. Shafiemehr, M. Persson, "Laboratory prototype of UWB applicator for head and neck hyperthermia," 12th International Congress on Hyperthermic Oncology ICHO 2016, New Orle.

13. Paulides, M. M., R. R. Stauffer, E. Neufeld, P. F. Maccarini, A. Kyriakou, R. A. M. Canters, C. J. Diederich, J. F. Bakker, and G. C. Van Rhoo, "Simulation techniques in hyperthermia treatment planning," Int. J. Hyperthermia., Vol. 29, No. 4, 346-357, 2013.
doi:10.3109/02656736.2013.790092

14. Kok, H. P., P. Wust, P. R. Stauffer, F. Bardati, G. C. van Rhoon, and J. Crezee, "Current state of the art of regional hyperthermia treatment planning: A review," Radiat. Oncol., Vol. 10, 196, 2015.
doi:10.1186/s13014-015-0503-8

15. CST, Computer Simulation Technology, Retrieved from https://www.cst.com/Products/CSTMWS.

16. Dobsıcek Trefna, H., M. Shafiemehr, and M. Persson, "Laboratory prototype of UWB applicator for head and neck hyperthermia," 12th International Congress on Hyperthermic Oncology ICHO 2016, New Orleans, USA, Apr. 11–15, 2016.

17. Gabriel, S. R., W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

18. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultra-wideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

19. Canters, R. A. M., P. Wust, J. F. Bakker, and G. C. Van Rhoon, "A literature survey on indicators for characterization and optimization of SAR distributions in deep hyperthermia, a plea for standardization," Int. J. Hyperthe., Vol. 25, No. 7, 593-608, 2009.
doi:10.3109/02656730903110539