Vol. 72

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-02-02

Data Preconditioning with Gabor Nonstationary Deconvolution for Radar Imaging of Highly Dissipative and Dispersive Media

By Kay Yuhong Liu, Elise C. Fear, and Mike E. Potter
Progress In Electromagnetics Research B, Vol. 72, 169-195, 2017
doi:10.2528/PIERB16102104

Abstract

In medical microwave imaging applications, electromagnetic (EM) waves propagate through human tissues, which are inherently attenuative and dispersive. In the resulting image, these effects translate to a lack of resolution that increases with time/distance. To produce microwave images with high resolution, there is a strong need for a technique that is able to compensate for the energy loss and correct for the wavelet distortion. Gabor nonstationary deconvolution was developed in the field of Seismology to compensate for attenuation loss, correct phase dispersion, and produce images with high resolution. In this study, the Gabor algorithm is proposed to deal with the nonstationarity in EM wave propagation and attenuation. Gabor deconvolution is essentially based on the assumption that the anelastic attenuation of seismic waves can be described by a constant Q theory. We investigate the Q characterization of EM wave propagation, the frequency-dependency of EM Q, and the effectiveness of Gabor deconvolution to deal with high loss and dispersion. To accommodate for the EM application conditions, several adjustments are made to the proposed algorithm. Our test results indicate that Gabor nonstationary deconvolution is able to sufficiently compensate for attenuation loss and correct phase dispersion for EM waves that propagate through lossy and dispersive media.

Citation


Kay Yuhong Liu, Elise C. Fear, and Mike E. Potter, "Data Preconditioning with Gabor Nonstationary Deconvolution for Radar Imaging of Highly Dissipative and Dispersive Media," Progress In Electromagnetics Research B, Vol. 72, 169-195, 2017.
doi:10.2528/PIERB16102104
http://jpier.org/PIERB/pier.php?paper=16102104

References


    1. Fear, E. C., "Microwave imaging of the breast," Technol. Cancer Res. Treat., Vol. 4, 69-82, 2005.
    doi:10.1177/153303460500400110

    2. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
    doi:10.1088/0031-9155/52/10/001

    3. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
    doi:10.1088/0031-9155/52/20/002

    4. Hassan, A. M. and M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Rev. Biomed. Eng., Vol. 4, 103-118, 2011.
    doi:10.1109/RBME.2011.2169780

    5. Mojabi, P., M. Ostadrahimi, L. Shafai, and J. LoVetri, "Microwave tomography techniques and algorithms: A review," Proc. 15th Int. Symp. Antenna Technology and Applied Electromagnetics, 2012.

    6. Fang, Q., P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Med. Imag., Vol. 23, 475-484, 2004.
    doi:10.1109/TMI.2004.824152

    7. Rubak, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Trans. Antennas Propag., Vol. 55, 2320-2331, 2007.
    doi:10.1109/TAP.2007.901993

    8. Meaney, P. M., et al., "Microwave tomography in the context of complex breast cancer imaging," Conf. Proc. IEEE Eng. Med. Biol. Soc., 3398-3401, 2010.

    9. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Med. Phys., Vol. 37, 4210-4226, 2010.
    doi:10.1118/1.3443569

    10. Johnson, J. E., T. Takenaka, and T. Tanaka, "Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition," IEEE Trans. Biomed. Eng., Vol. 55, 1941-1945, 2008.
    doi:10.1109/TBME.2007.899364

    12. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
    doi:10.2528/PIER09033001

    13. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.
    doi:10.2528/PIERM11040903

    14. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
    doi:10.1163/156939304774113089

    15. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Trans. Geosci. Remote Sens., Vol. 44, 3527-3539, 2006.
    doi:10.1109/TGRS.2006.881753

    16. Golnabi, A. H., P. M. Meaney, S. D. Geimer, and K. D. Paulsen, "Comparison of no-prior and soft-prior regularization in biomedical microwave imaging," J. Med. Phys., Vol. 36, 159-170, 2011.
    doi:10.4103/0971-6203.83482

    17. Golnabi, A. H., P. M. Meaney, and K. D. Paulsen, "Tomographic microwave imaging with incorporated prior spatial information," IEEE Trans. Microw. Theory Techn., Vol. 61, 2129-2136, 2013.
    doi:10.1109/TMTT.2013.2247413

    18. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Probl., Vol. 25, 2009.

    19. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, 2002.
    doi:10.1109/TBME.2002.800759

    20. Li, X., S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Techn., Vol. 52, 1856-1865, 2004.
    doi:10.1109/TMTT.2004.832686

    21. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Compon. Lett., Vol. 11, 130-132, 2001.

    22. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, 1690-1705, 2003.
    doi:10.1109/TAP.2003.815446

    23. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microw. Theory Techn., Vol. 51, 887-892, 2003.
    doi:10.1109/TMTT.2003.808630

    24. Abbosh, A. M., B. Mohammed, and K. S. Bialkowski, "Differential microwave imaging of the breast pair," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1434-1437, 2016.
    doi:10.1109/LAWP.2015.2512260

    25. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast tumors: Comparison of skin subtraction algorithms," J. Subsurface Sensing Technologies and Applications, Vol. 4129, 207-217, 2000.
    doi:10.1117/12.390618

    26. Maklad, B. and E. C. Fear, "Reduction of skin reflections in radar-based microwave breast imaging," Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1-8, 21-24, 2008.

    27. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Trans. Microw. Theory Techn., Vol. 61, 2119-2128, 2013.
    doi:10.1109/TMTT.2013.2255884

    28. Meaney, P. M., et al., "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad. Radiol., Vol. 14, 207-218, 2007.
    doi:10.1016/j.acra.2006.10.016

    29. Poplack, S. P., et al., "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, 350-359, 2007.
    doi:10.1148/radiol.2432060286

    30. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Probl., Vol. 26, 2010.

    31. Henriksson, T., et al., "Clinical trials of a multistatic UWB radar for breast imaging," Loughborough Antennas and Propagation Conference, 2011.

    32. Bourqui, J., J. M. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomed. Imaging, Vol. 2012, article ID 851234, 2012.

    33. Wang, Y., Seismic Inverse Q Filtering, Blackwell Publishing Ltd, Oxford, UK, 2008.

    34. Margrave, G. F., M. P. Lamoureux, and D. C. Henley, "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data," Geophysics, Vol. 76, W15-W30, 2011.
    doi:10.1190/1.3560167

    35. Margrave, G. F., L. Dong, P. Gibson, J. Grossman, D. C. Henley, and M. P. Lamoureux, "Gabor deconvolution: Extending Wiener's method to non-stationarity," CSEG Recorder, Vol. 28, No. 10, 5-12, 2003.

    36. Perz, M., L. Mewhort, G. F. Margrave, and L. Ross, "Gabor deconvolution: Real and synthetic data experiences," CSEG National Convention, Calgary, AB, Canada, 2005.

    37. Ferguson, R. J. and G. F. Margrave, "Attenuation compensation for georadar data by Gabor deconvolution," CREWES Res. Report, Vol. 24, No. 18, 2012.

    38. Robinson, E. A., "Predictive decomposition of time series with application to seismic exploration," Geophysics, Vol. 32, 418-484, 1967.
    doi:10.1190/1.1439873

    39. Robinson, E. A. and S. Treitel, "Principles of digital Wiener filtering*," Geophys. Prospect., Vol. 15, 311-332, 1967.
    doi:10.1111/j.1365-2478.1967.tb01793.x

    40. Kjartansson, E., "Constant Q-wave propagation and attenuation," J. Geophys. Res., Vol. 84, 4737-4748, 1979.
    doi:10.1029/JB084iB09p04737

    41. Turner, G. and A. F. Siggins, "Constant Q-attenuation of subsurface radar pulses," Geophysics, Vol. 59, 1192-1200, 1994.
    doi:10.1190/1.1443677

    42. Bano, M., "Constant dielectric losses of ground-penetrating radar waves," Geophys. J. Int., Vol. 124, 279-288, 1996.
    doi:10.1111/j.1365-246X.1996.tb06370.x

    43. Irving, J. D. and R. J. Knight, "Removal of wavelet dispersion from ground-penetrating radar data," Geophysics, Vol. 68, 960-970, 2003.
    doi:10.1190/1.1581068

    44. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
    doi:10.1088/0031-9155/41/11/003

    45. Sheriff, R. E., Encyclopedic Dictionary of Exploration Geophysics, Society of Exploration Geophysics, 1984.

    46. Aki, K. and P. G. Richards, Quantitative Seismology, University Science Books, Sausalito, CA, US, 2002.

    47. Von Hippel, A. R., Dielectrics and Waves, John Wiley & Sons Inc, New York, US, 1959.

    48. Stacey, F. D., M. T. Gladwin, B. McKavanagh, A. T. Linde, and L. M. Hastie, "Anelastic damping of acoustic and seismic pulses," Geophys. Surv., Vol. 2, 133-151, 1975.
    doi:10.1007/BF01447906

    49. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, US, 2000.

    50. Pozar, D. M., Microwave Engineering, John Wiley & Sons Inc, Hoboken, NJ, US, 2005.

    51. Margrave, G. F., "Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering," Geophysics, Vol. 63, 244-259, 1998.
    doi:10.1190/1.1444318

    52. Yilmaz, O., Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists, Tulsa, OK, US, 2001.
    doi:10.1190/1.9781560801580

    53. Bode, H. W., Network Analysis and Feedback Amplifier Design, Van Nostrand Company, Inc, New York, US, 1945.

    54. Claerbout, J. F., Fundamentals of Geophysical Data Processing, Blackwell ScientiFIc Publications, Palo Alto, CA, US, 1985.

    55. Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall Inc, Englewood Cliffs, NJ, US, 1989.

    56. Margrave, G. F., D. C. Henley, M. P. Lamoureux, V. Iliescu, and J. P. Grossman, "A update on Gabor deconvolution," CREWES Res. Report, Vol. 14, No. 36, 2002.

    57. Wadsworth, G. P., E. A. Robinson, J. G. Bryan, and P. M. Hurley, "Detection of reflections on seismic records by linear operators," Geophysics, Vol. 18, 539-586, 1953.
    doi:10.1190/1.1437911

    58. Smith, A. D. and R. J. Ferguson, "Minimum-phase signal calculation using the real cepstrum," CREWES Res. Report, Vol. 26, No. 72, 2014.

    59. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, 2318-2326, 2010.
    doi:10.1109/TAP.2010.2048844

    60. Liu, K. Y., E. C. Fear, and M. E. Potter, "Antenna aperture localization for arrival time correction using first-break," Progress In Electromagnetics Research B, Vol. 62, 105-120, 2015.
    doi:10.2528/PIERB14121908