Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-12-02

Theoretical Modelling of Kelvin Helmholtz Instability Driven by an Ion Beam in a Negative Ion Plasma

By Kavita Rani and Suresh C. Sharma
Progress In Electromagnetics Research B, Vol. 71, 167-181, 2016
doi:10.2528/PIERB16092304

Abstract

An ion beam propagating through a magnetized plasma having positive ions K+ (Potassium ions), electrons and negative ions SF6- (Sulphur hexafluoride ions) drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. For two modes, K+ and SF6-, the frequency and the growth rate of the unstable wave increase with the relative density of negative ions. It is observed that the beam has destabilizing effect on the growth rate of KHI in the presence of negative ions. However, at the large concentration of the negative ions beam stabilizes the growth rate of KHI. An increase in mass of negative ions also stabilizes the growth rate of KHI modes. It is also observed that increase in ion beam velocities and densities play a significant role in changing the growth rate of KHI modes. Moreover, the finite geometry effects tend to modify the dispersion properties and growth of KHI modes.

Citation


Kavita Rani and Suresh C. Sharma, "Theoretical Modelling of Kelvin Helmholtz Instability Driven by an Ion Beam in a Negative Ion Plasma," Progress In Electromagnetics Research B, Vol. 71, 167-181, 2016.
doi:10.2528/PIERB16092304
http://jpier.org/PIERB/pier.php?paper=16092304

References


    1. D'Angelo, N., "Ultralow frequency fluctuations at the polar cusp boundaries," J. Geophys. Res., Vol. 78, No. 7, 1206-1209, 1973.
    doi:10.1029/JA078i007p01206

    2. Pu, Z. Y. and M. G. Kivelson, "Kelvin Helmholtz instability at magnetopause: Energy flux into magnetosphere," J. Geophys. Res., Vol. 88, No. A2, 853-861, 1983.
    doi:10.1029/JA088iA02p00853

    3. Miura, A., "Kelvin Helmholtz instability for supersonic shear flow at the magnetospheric boundary," Geophys. Res. Lett., Vol. 17, No. 6, 749-752, 1990.
    doi:10.1029/GL017i006p00749

    4. Hasegawa, H., M. Fujimoto, T. D. Phan, H. Reme, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. T. Dokoro, "Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices," Nature, Vol. 430, No. 7001, 755-758, 2004.
    doi:10.1038/nature02799

    5. Migliuolo, S., "Velocity shear instabilities in the anisotropic solar wind and the heating of ions perpendicular to the magnetic field," J. Geophys. Res., Vol. 89, No. A1, 27-36, 1984.
    doi:10.1029/JA089iA01p00027

    6. Ershkovich, A. I., "Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena," Space Sci. Rev., Vol. 25, No. 1, 3-34, 1980.
    doi:10.1007/BF00200796

    7. Penz, T., N. V. Erakaev, H. K. Biernet, H. Lammer, U. V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, and W. Baumjohann, "Ion loss Mars caused by Kelvin-Helmholtz instability," Planet. Space Sci., Vol. 52, No. 13, 1157-1167, 2004.
    doi:10.1016/j.pss.2004.06.001

    8. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Chap. XI, 481, Clarendon Press, Oxford, 1961.

    9. D'Angelo, N., "Kelvin-Helmholtz instability in a fully ionized plasma in a magnetic field," Phys. Fluids , Vol. 8, No. 9, 1748-1750, 1965.
    doi:10.1063/1.1761496

    10. D'Angelo, N. and S. V. Goeler, "Investigation of Kelvin Helmholtz instability in a cesium plasma," Phys. Fluids, Vol. 9, No. 2, 309-313, 1966.
    doi:10.1063/1.1761674

    11. Smith, C. G. and S. V. Goeler, "The Kelvin-Helmholtz instability in a collisionless plasma model," Phys. Fluids, Vol. 11, No. 12, 2665-2668, 1968.
    doi:10.1063/1.1691873

    12. D' Angelo, N. and B. Song, "The Kelvin-Helmholtz instability in dusty plasmas," Planet. Space Sci., Vol. 38, No. 12, 1577-1579, 1990.
    doi:10.1016/0032-0633(90)90164-L

    13. D'Angelo, N. and B. Song, "Kelvin-Helmholtz instability in a plasma with negative ions," IEEE Trans. Plasma Sci., Vol. 19, No. 1, 42-46, 1991.
    doi:10.1109/27.62365

    14. An, T., R. L. Merlino, and N. D'Angelo, "The effect of negative ions on the Kelvin-Helmholtz instability in a magnetized potassium plasma," Phys. Lett. A, Vol. 14, No. 1-2, 47-52, 1996.
    doi:10.1016/0375-9601(96)00147-8

    15. Luo, Q. Z., N. D'Angelo, and R. L. Merlino, "The Kelvin-Helmholtz instability in a plasma with negatively charged dust," Phys. Plasmas, Vol. 8, No. 1, 31-35, 2001.
    doi:10.1063/1.1323755

    16. Ostrikov, K., "Surface science of plasma exposed surfaces --- A challenge for applied plasma science," Vacuum, Vol. 83, No. 1, 4-10, 2008.
    doi:10.1016/j.vacuum.2008.03.051

    17. Ostrikov, K., S. Kumar, and H. Sugai, "Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions," Phys. Plasmas, Vol. 8, No. 7, 3490-3497, 2001.
    doi:10.1063/1.1375149

    18. Ostrikov, K., "Colloquium: Reactive plasmas as a versatile nano fabrication tool," Rev. Mod. Phys., Vol. 77, No. 2, 489-511, 2005.
    doi:10.1103/RevModPhys.77.489

    19. Sharma, S. C. and M. P. Srivastava, "Ion beam driven ion cyclotron waves in a plasma cylinder with negative ions," Phys. Plasmas, Vol. 8, No. 3, 679-686, 2001.
    doi:10.1063/1.1336533

    20. Sharma, S. C. and A. Gahlot, "Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions," Phys. Plasmas, Vol. 15, No. 7, 0737051-0737056, 2008.
    doi:10.1063/1.2949708

    21. Song, B., N. D'Angelo, and R. L. Merlino, "Ion-acoustic waves in a plasma with negative ions," Phys. Fluids B, Vol. 3, No. 2, 284-287, 1991.
    doi:10.1063/1.859736

    22. An, T., R. L. Merlino, and N. D' Angelo, "Lower hybrid waves in a plasma with negative ions," Phys. Fluids B, Vol. 5, No. 6, 1917-1918, 1993.
    doi:10.1063/1.860775

    23. D'Angelo, N. and R. L. Merlino, "Electrostatic ion-cyclotron waves in a plasma with negative ions," IEEE Trans. Plasma Sci., Vol. 14, No. 3, 285-286, 1986.
    doi:10.1109/TPS.1986.4316545

    24. Rosenberg, M. and R. L. Merlino, "Ion-acoustic instability in a dusty negative ion plasma," Planet. Space Sci., Vol. 55, No. 10, 1464-1469, 2007.
    doi:10.1016/j.pss.2007.04.012

    25. Yatsui, K. and Y. Yamamoto, "Heating of plasma ions by a modulated beam," Phys. Letters, Vol. 30A, No. 2, 135-136, 1969.
    doi:10.1016/0375-9601(69)91182-7

    26. Chang, R. P., "Lower hybrid beam-plasma instability," Phys. Rev. Lett., Vol. 35, No. 5, 285-288, 1975.
    doi:10.1103/PhysRevLett.35.285

    27. Prakash, V., S. C. Sharma, Vijayshri, and R. Gupta, "Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma," Phys. Plasmas, Vol. 21, No. 3, 0337011-0337016, 2014.
    doi:10.1063/1.4868433

    28. Chow, V. W. and M. Rosenberg, "Electrostatic ion cyclotron instabilities in negative ion plasmas," Plasma Phys., Vol. 3, No. 4, 1202-1211, 1996.
    doi:10.1063/1.871744

    29. Kim, S. H., J. R. Heinrich, and R. L. Merlino, "Electrostatic ion-cyclotron waves in a plasma with heavy negative ions," Planet. Space Sci., Vol. 56, No. 11, 1552-1559, 2008.
    doi:10.1016/j.pss.2008.07.020

    30. Tyagi, R. K., R. S. Pandey, and A. Kumar, "Surface coating by velocity shear instability in plasma," Theoretical Foundations of Chem. Engg., Vol. 46, No. 5, 508-514, 2012.
    doi:10.1134/S0040579512050193

    31. Stoffels, E., W. W. Stoffels, and G. M. W. Kroesen, "Plasma chemistry and surface processes of negative ions," Plasma Sources Sci. Technol., Vol. 10, No. 1, 311-317, 2001.
    doi:10.1088/0963-0252/10/2/321

    32. Kuznetsova, V. P., S. Yu. Tarasov, and A. I. Dmitriev, "Nanostructuring burnishing and subsurface shear instability," Journ. of Mat. Processing Tech., Vol. 217, No. 1, 327-335, 2015.
    doi:10.1016/j.jmatprotec.2014.11.023

    33. Rosenberg, M. and P. K. Shukla, "Instability of ion flows in bounded dusty plasma systems," Phys. Plasmas, Vol. 5, No. 10, 3786, 1998.
    doi:10.1063/1.872743

    34. Matsuoka, C., "Kelvin-Helmholtz instability and roll-up," Scholarpedia, Vol. 9, No. 3, 11821, 2014.
    doi:10.4249/scholarpedia.11821

    35. Moore, T. W., K. Nykyri, and A. P. Dimmock, "Cross-scale energy transport in space plasmas," Nature Physics, 2016, doi:10.1038/nphys3869.