Vol. 70

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-20

Cogging Torque and Torque Ripple in a Direct-Drive Interior Permanent Magnet Generator

By Rukmi Dutta, Kazi Ahsanullah, and Faz Rahman
Progress In Electromagnetics Research B, Vol. 70, 73-85, 2016
doi:10.2528/PIERB16072001

Abstract

This paper investigates the cogging torque and torque ripple in high pole number interior permanent magnet generators, designed for direct-drive applications. Two interior permanent magnet rotor topologies --- flat-shaped and V-shaped were considered with distributed wound and fractional slot concentrated wound stators. A comparison of torque performances was made between distributed wound and fractional-slot concentrated wound generators. Cogging torque was minimized by finding an optimum magnet pole arc length and torque ripples were minimized by finding optimum slotopening and flux barrier shape. Design analysis was carried out in finite element models. It was found that flat-shaped rotor topology in the fractional slot concentrated wound stator can provide the best torque performance regarding low cogging torque and torque ripple. This finding was verified in constructed prototype machine.

Citation


Rukmi Dutta, Kazi Ahsanullah, and Faz Rahman, "Cogging Torque and Torque Ripple in a Direct-Drive Interior Permanent Magnet Generator," Progress In Electromagnetics Research B, Vol. 70, 73-85, 2016.
doi:10.2528/PIERB16072001
http://jpier.org/PIERB/pier.php?paper=16072001

References


    1. Morandin, M., E. Fornasiero, S. Bolognani, and N. Bianchi, "Torque and power rating of a wind- power PM generator drive for maximum profit-to-cost ratio," IEEE Transactions on Industry Applications, Vol. 49, 866-872, 2013.
    doi:10.1109/TIA.2013.2244191

    2. Dutta, R., L. Chong, and M. F. Rahman, "Design and experimental verification of an 18-Slot/14- pole fractional-slot concentrated winding interior permanent magnet machine," IEEE Trans. Energy Convers., Vol. 28, 181-190, 2013.
    doi:10.1109/TEC.2012.2229281

    3. El-Refaie, A. M., "Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges," IEEE Trans. Ind. Electron., Vol. 57, 107-121, 2010.
    doi:10.1109/TIE.2009.2030211

    4. Cros, J. and P. Viarouge, "Synthesis of high performance PM motors with concentrated windings," IEEE Trans. Energy Convers., Vol. 17, 248-253, 2002.
    doi:10.1109/TEC.2002.1009476

    5. Damiano, A., I. Marongiu, A. Monni, and M. Porru, "Design of a 10MW multi-phase PM synchronous generator for direct-drive wind turbines," Industrial Electronics Society, IECON 2013 --- 39th Annual Conference of the IEEE, 5266-5270, 2013.
    doi:10.1109/IECON.2013.6699991

    6. Chang Seop, K. and S. Jin-Soo, "New cogging-torque reduction method for brushless permanent-magnet motors," IEEE Trans. Magn., Vol. 39, 3503-3506, 2003.
    doi:10.1109/TMAG.2003.819473

    7. Sopanen, J., V. Ruuskanen, J. Nerg, and J. Pyrhonen, "Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent-magnet generator," IEEE Trans. Energy Convers., Vol. 58, 3859-3867, 2011.

    8. Cistelecan, M. V., M. Popescu, and M. Popescu, "Study of the number of slots/pole combinations for low speed permanent magnet synchronous generators," Proc. IEMDC, 1616-1620, 2007.

    9. Ge, X., G. Han, Z. Cheng, and Z. Wang, "Research of cogging torque in the brushless DC motor with fractional ratio of slots and poles," Proc. ICEMS, Vol. 1, 76-80, 2005.

    10. Wu, D. and Z. Q. Zhu, "Design tradeoff between cogging torque and torque ripple in fractional slot surface-mounted permanent magnet machines," IEEE Trans. Magn., Vol. 51, 1-4, 2015.

    11. Sun, A., J. Li, R. Qu, and D. Li, "Effect of multilayer windings on rotor losses of interior permanent magnet generator with fractional-slot concentrated-windings," IEEE Trans. Magn., Vol. 50, 1-4, 2014.

    12. Hong, C., Q. Ronghai, L. Jian, and L. Dawei, "Demagnetization performance of a 7 MW interior permanent magnet wind generator with fractional-slot concentrated windings," IEEE Trans. Magn., Vol. 51, 1-4, 2015.

    13. Valavi, M., A. Nysveen, R. Nilssen, R. D. Lorenz, and T. Rolvag, "Influence of pole and slot combinations on magnetic forces and vibration in low-speed PM wind generators," IEEE Trans. Magn., Vol. 50, 1-11, 2014.
    doi:10.1109/TMAG.2013.2293124

    14. Guemes, J. A., A. A. Iraolagoitia, J. J. Del Hoyo, and P. Fernandez, "Torque analysis in permanent-magnet synchronous motors: A comparative study," IEEE Trans. Energy Convers., Vol. 26, 55-63, 2011.
    doi:10.1109/TEC.2010.2053374

    15. Zhu, Z. Q. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Trans. Energy Convers., Vol. 15, 407-412, 2000.
    doi:10.1109/60.900501

    16. Bianchi, N. and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted PM motors," IEEE Trans. Ind. Appl., Vol. 38, 1259, 2002.
    doi:10.1109/TIA.2002.802989

    17. Bianchi, N., M. Degano, and E. Fornasiero, "Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors," IEEE Trans. Ind. Appl., Vol. 51, 187-195, 2015.
    doi:10.1109/TIA.2014.2327143

    18. Un-Jae, S., C. Yon-Do, C. Jae-Hak, H. Pil-Wan, K. Dae-hyun, and L. Ju, "A technique of torque ripple reduction in interior permanent magnet synchronous motor," IEEE Trans. Magn., Vol. 47, 3240-3243, 2011.
    doi:10.1109/TMAG.2011.2150742

    19. Han, S.-H., T. M. Jahns, W. L. Soong, M. K. Guven, and M. S. Illindala, "Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair," IEEE Trans. Energy Convers., Vol. 25, 118-127, 2010.
    doi:10.1109/TEC.2009.2033196

    20. Bianchi, N., S. Bolognani, M. D. Pre, and G. Grezzani, "Design considerations for fractional-slot winding configurations of synchronous machines," IEEE Trans. Ind. Appl., Vol. 42, 997-1006, 2006.
    doi:10.1109/TIA.2006.876070

    21. Grop, H., J. Soulard, and H. Persson, "Theoretical investigation of fractional conductor windings for AC-machines --- definition, air-gap m.m.f. and winding factors," Proc. ICEM, 1-6, 2008.

    22. Evans, D., Z. Azar, L. J. Wu, and Z. Q. Zhu, "Comparison of optimal design and performance of PM machines having non-overlapping windings and different rotor topologies," IET Proc. PEMD, 1-7, 2010.

    23. Islam, M. S., R. Islam, and T. Sebastian, "Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications," IEEE Trans. Ind. Appl., Vol. 47, 88-95, 2011.
    doi:10.1109/TIA.2010.2091612

    24. Zhu, Z. Q., "A simple method for measuring cogging torque in permanent magnet machines," Proc. IEEE Conf. PES, 1-4, 2009.

    25. Islam, M. S., S. Mir, and T. Sebastian, "\Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor," IEEE Trans. Ind. Appl., Vol. 40, 813-820, 2004.
    doi:10.1109/TIA.2004.827469

    26. Heins, G., M. Thiele, and T. Brown, "Accurate torque ripple measurement for PMSM," IEEE Trans. Instrumentation and Measurement, Vol. 60, 3868-3874, 2011.
    doi:10.1109/TIM.2011.2138350