Vol. 70

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-13

Detection of Metal Objects Near a Random Rough Surface of Medium at Sounding by Orthogonally Polarized Ultrawideband Pulses

By Vladimir Ilich Koshelev, Andrey Antonovich Petkun, and Vyacheslav Mikhailovich Tarnovsky
Progress In Electromagnetics Research B, Vol. 70, 27-40, 2016
doi:10.2528/PIERB16070402

Abstract

Using the program of numerical simulation of ultrawideband pulse reflection from dielectric medium with random rough surface, a possibility to detect ideally conducting objects placed near the surface was investigated. Medium parameters corresponded to the cases of the dry and wet sandy ground. Based on the correlation analysis of the reflected objects with orthogonal polarizations, a decision about the presence or absence of an object was made. An ideally conducting rectangular object was buried into the ground with a random rough surface to different depth. A cross-shaped metal object was disposed above the surface.

Citation


Vladimir Ilich Koshelev, Andrey Antonovich Petkun, and Vyacheslav Mikhailovich Tarnovsky, "Detection of Metal Objects Near a Random Rough Surface of Medium at Sounding by Orthogonally Polarized Ultrawideband Pulses," Progress In Electromagnetics Research B, Vol. 70, 27-40, 2016.
doi:10.2528/PIERB16070402
http://jpier.org/PIERB/pier.php?paper=16070402

References


    1. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., The Institution of Electrical Engineers, London, 2004.
    doi:10.1049/PBRA015E

    2. Carin, L., N. Geng, M. McClure, J. Sichina, and L. Nguyen, "Ultrawide-band synthetic-aperture radar for mine-field detection," IEEE Antennas and Propagation Magazine, Vol. 41, No. 2, 18-33, 1999.
    doi:10.1109/74.755021

    3. Sullivan, A., R. Damarla, N. Geng, Y. Dong, and L. Carin, "Ultrawide-band synthetic aperture radar for detection of unexploded ordnance: Modeling and measurements," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 9, 1306-1315, 2000.
    doi:10.1109/8.898763

    4. Taylor, J. D., Ultra Wideband Radar Technology, CRC Press, 2001.

    5. Dogaru, T. and L. Carin, "Time-domain sensing of targets buried under a rough air-ground interface," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 360-372, 1998.
    doi:10.1109/8.662655

    6. Dogaru, T., L. Collins, and L. Carin, "Optimal time-domain detection of a deterministic target buried under a randomly rough interface," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 3, 313-326, 2001.
    doi:10.1109/8.918604

    7. Rappaport, C., M. El-Shenawee, and H. Zhan, "Suppressing GPR clutter from randomly rough ground surfaces to enhance nonmetallic mine detection," Subsurface Sensing Technologies and Applications, Vol. 4, No. 4, 311-326, 2003.
    doi:10.1023/A:1026352615393

    8. Zhang, G. F. and L. Tsang, "Angular correlation function of wave scattering by a random rough surface and discrete scatterers and its application in the detection of a buried object," Waves in Random Media, Vol. 7, 467-478, 1997.

    9. Zhang, G. F., L. Tsang, and Y. Kuga, "Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 2, 444-453, 1997.
    doi:10.1109/36.563283

    10. Cmielewski, O., M. Saillard, and H. Tortel, "Detection of buried objects beneath a rough surface," Waves in Random and Complex Media, Vol. 16, 417-431, 2006.
    doi:10.1080/17455030600719687

    11. Morelle, N., M. Testorf, N. Thirion-Moreau, and M. Saillard, "Electromagnetic probing for target detection: Rejection of surface clutter based on the Wigner distribution," Journal of the Optical Society of America A-optics Image Science and Vision, Vol. 26, No. 5, 1178-1186, 2009.
    doi:10.1364/JOSAA.26.001178

    12. Efremov, A. M., V. I. Koshelev, B. M. Kovalchuk, V. V. Plisko, and K. N. Sukhushin, "Generation and radiation of high-power ultrawideband nanosecond pulses," Journal of Communications Technology and Electronics, Vol. 52, No. 7, 756-764, 2007.
    doi:10.1134/S1064226907070078

    13. Balzovskii, E. V., Y. I. Buyanov, and V. I. Koshelev, "Dual polarization receiving antenna array for recording of ultra-wideband pulses," Journal of Communications Technology and Electronics, Vol. 55, No. 2, 172-180, 2010.
    doi:10.1134/S1064226910020087

    14. Warnick, K. F. and W. C. Chew, "Numerical simulations methods for rough surface scattering --- Topical Review," Waves in Random Media, Vol. 11, R1-R30, 2001.
    doi:10.1088/0959-7174/11/1/201

    15. O'Neill, K., R. F. Lussky, Jr., and K. D. Paulsen, "Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric," IEEE Transactions on Geoscience and Remote Sensing, Vol. , No. , {, , Vol. 34, No. 2, 367-376, 1996.
    doi:10.1109/36.485114

    16. Geng, N. and L. Carin, "Wide band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 610-619, 1999.
    doi:10.1109/8.768799

    17. Wang, X., C. F. Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
    doi:10.2528/PIER02111901

    18. Guan, B., J. F. Zhang, X. Y. Zhou, and T. J. Cui, "Electromagnetic scattering from objects above a rough surface using the method of moments with half-space Green's function," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 10, 3399-3405, 2009.
    doi:10.1109/TGRS.2009.2022169

    19. Johnson, J. T., "Numerical study of scattering from an object above a rough surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1361-1367, 2002.
    doi:10.1109/TAP.2002.802152

    20. Johnson, J. T. and R. J. Burkholder, "A study of scattering from an object below a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 59-66, 2004.
    doi:10.1109/TGRS.2003.815670

    21. Ji, W.-J. and C.-M. Tong, "The E-PILE+SMCG for scattering from an object below 2D soil rough surface," Progress In Electromagnetics Research B, Vol. 33, 317-337, 2011.
    doi:10.2528/PIERB11061004

    22. Bakr, S. A. and T. Mannseth, "An approximate hybrid method for electromagnetic scattering from an underground target," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 99-107, 2013.
    doi:10.1109/TGRS.2012.2198068

    23. Afifi, S., B. Mokhtar, R. Dusseaux, and A. Berrouk, "Electromagnetic wave scattering from rough layered interfaces: Analysis with the small perturbation method and the small slope approximation," Progress In Electromagnetics Research B, Vol. 57, 177-190, 2014.

    24. Altuncu, Y., "A numerical method for electromagnetic scattering by 3-D dielectric objects buried under 2-D locally rough surfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3634-3643, 2015.
    doi:10.1109/TAP.2015.2438859

    25. Bourgeois, J. M. and G. S. Smith, "A complete electromagnetic simulation of the separated-aperture sensor for detecting buried land mines," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1419-1426, 1998.
    doi:10.1109/8.725272

    26. Giannakis, I., A. Giannopoulos, and C. Warren, "A realistic FDTD numerical modelling framework of ground penetrating radar for landmine detection," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 37-51, 2015.
    doi:10.1109/JSTARS.2015.2468597

    27. Fang, H., G. Lin, and R. Zhang, "The first-order symplectic euler method for simulation of GPR wave propagation in pavement structure," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 93-98, 2013.
    doi:10.1109/TGRS.2012.2202121

    28. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, Boston, MA, 2000.

    29. Leschanskiy, I., G. N. Lebedeva, and V. D. Schumilin, "Electrical parameters of sandy and loamy soils in the range of centimeter, decimeter and meter wavelength," Radiophysics and Quantum Electronics, Vol. 14, No. 4, 445-451, 1971.
    doi:10.1007/BF01030730

    30. Teixeira, F. L., W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang, "Finite-difference time domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 11, 1928-1937, 1998.
    doi:10.1109/36.729364