Vol. 68
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-06-25
Magnetoelectric-Field Microwave Antennas: Far-Field Orbital Angular Momenta from Chiral-Topology Near Fields
By
Progress In Electromagnetics Research B, Vol. 68, 141-157, 2016
Abstract
The near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have space and time symmetry breakings. Such MDM-originated fields --- called magnetoelectric (ME) fields --- carry both spin and orbital angular momentums. By virtue of unique topology, ME fields are strongly different from free-space electromagnetic (EM) fields. In this paper, we show that because of chiral topology of ME fields in a near-field region, farfield orbital angular momenta (OAM) can be observed, both numerically and experimentally. In a single-element antenna, we obtain a radiation pattern with an angular squint. We reveal that in far-field microwave radiation a crucial role is played by the ME energy distribution in the near-field region.
Citation
Maksim Berezin, Eugene O. Kamenetskii, and Reuven Shavit, "Magnetoelectric-Field Microwave Antennas: Far-Field Orbital Angular Momenta from Chiral-Topology Near Fields," Progress In Electromagnetics Research B, Vol. 68, 141-157, 2016.
doi:10.2528/PIERB16041203
References

1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, 8185, 1992.
doi:10.1103/PhysRevA.45.8185

2. Allen, L. and M. J. Padgett, "The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density," Opt. Commun., Vol. 184, 67, 2000.
doi:10.1016/S0030-4018(00)00960-3

3. Celechovsky, R. and Z. Bouchal, "Optical implementation of the vortex information channel," New J. Phys., Vol. 9, 328, 2007.
doi:10.1088/1367-2630/9/9/328

4. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.
doi:10.1103/PhysRevLett.110.203906

5. Yu, H., H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, "Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light," Sci. Rep., Vol. 3, 3191, 2013.

6. Zukauskas, A., M. Malinauskas, and E. Brasselet, "Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale," Appl. Phys. Lett., Vol. 103, 181122, 2013.
doi:10.1063/1.4828662

7. Liu, H., M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, C.- W. Qiu, and J. Teng, "Twisted focusing of optical vortices with broadband flat spiral zone plates," Adv. Opt. Mater., Vol. 2, 1193, 2014.
doi:10.1002/adom.201400315

8. Rodriguez-Fortuno, F. J., I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, "Resolving light handedness with an on-chip silicon microdisk," ACS Photon., Vol. 1, 762, 2014.
doi:10.1021/ph500084b

9. Dall, R., M. D. Fraser, A. S. Desyatnikov, G. Li, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, and E. A. Ostrovskaya, "Creation of orbital angular momentum states with chiral polaritonic lenses," Phys. Rev. Lett., Vol. 113, 200404, 2014.
doi:10.1103/PhysRevLett.113.200404

10. Thide, B., H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Phys. Rev. Lett., Vol. 99, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701

11. Deng, C., W. Chen, Z. Zhang, Y. Li, and Z. Feng, "Generation of OAM radio waves using circular vivaldi antenna array," Int. J. Antenn. Propag., Vol. 2013, 847859, 2013.

12. Edfors, O. and A. J. Johansson, "Is orbital angular momentum, OAM) based radio communication an unexploited area?," IEEE Trans. Antenn. Propag., Vol. 60, 1126, 2012.
doi:10.1109/TAP.2011.2173142

13. Gurevich, A. G. and G. A. Melkov, Magnetic Oscillations and Waves, CRC Press, New York, 1996.

14. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539, 2007.
doi:10.1088/1751-8113/40/24/017

15. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.
doi:10.1088/0953-8984/22/48/486005

16. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: Magnetic-dipolar-mode vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.
doi:10.1103/PhysRevA.84.023836

17. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.
doi:10.1103/PhysRevE.87.023201

18. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.
doi:10.1088/2040-8978/14/12/125602

19. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological properties of microwave magnetoelectric fields," Phys. Rev. E, Vol. 89, 023207, 2014.
doi:10.1103/PhysRevE.89.023207

20. Kamenetskii, E. O., E. Hollander, R. Joffe, and R. Shavit, "Unidirectional magnetoelectric-field multiresonant tunneling," J. Opt., Vol. 17, 025601, 2015.
doi:10.1088/2040-8978/17/2/025601

21. Kamenetskii, E. O., M. Berezin, and R. Shavit, "Microwave magnetoelectric fields: helicities and reactive power flows," Appl. Phys. B: Lasers Opt., Vol. 121, 31, 2015.
doi:10.1007/s00340-015-6199-5

22. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211, 2005.
doi:10.1088/0953-8984/17/13/018

23. Fano, U., "Effects of configuration interaction on intensities and phase shifts," Phys. Rev., Vol. 124, 1866, 1961.
doi:10.1103/PhysRev.124.1866

24. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," J. App. Phys., Vol. 114, 173902, 2013.
doi:10.1063/1.4828712

25. Fiebig, M., "Revival of the magnetoelectric effect," J. Phys. D, Vol. 38, R123, 2005.
doi:10.1088/0022-3727/38/8/R01

26. Mostovoy, M., "Ferroelectricity in spiral magnets," Phys. Rev. Lett., Vol. 96, 067601, 2006.
doi:10.1103/PhysRevLett.96.067601

27. Tokura, Y., S. Seki, and N. Nagaosa, "Multiferroics of spin origin," Rep. Prog. Phys., Vol. 77, 076501, 2014.
doi:10.1088/0034-4885/77/7/076501

28. Shindou, R., J.-I. Ohe, R. Matsumoto, S. Murakami, and E. Saitoh, "Chiral spin-wave edge modes in dipolar magnetic thin films," Phys. Rev. B, Vol. 87, 174402, 2013.
doi:10.1103/PhysRevB.87.174402

29. Shindou, R. and J.-I. Ohe, "Magnetostatic wave analog of integer quantum Hall state in patterned magnetic films," Phys. Rev. B, Vol. 89, 054412, 2014.
doi:10.1103/PhysRevB.89.054412