Vol. 67

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-05-05

Application of Facet Scattering Model in SAR Imaging of Sea Surface Waves with Kelvin Wake

By Jia-Kun Wang, Min Zhang, Jun-Long Chen, and Zhaohui Cai
Progress In Electromagnetics Research B, Vol. 67, 107-120, 2016
doi:10.2528/PIERB16022804

Abstract

The principal purpose of this work is the simulation of the ship wake in Synthetic Aperture Radar (SAR) imaging based on a facet scattering model. The hydrodynamic model of the surface waves mainly considers the Kelvin wake waves and the wind driven waves. For the prediction of radar returns from the composite surface, the semi-deterministic facet scattering model (SDFSM) is proposed, which is verified to have good performance through a comparison with the experiment by SASS-II. Then, the distributions of backscattering normalized radar cross section (NRCS) of facets are investigated for both VV and HH polarizations and characteristics of the wake pattern are shown with good visibility. On the basis of these, an application of velocity bunching (VB) imaging model is presented in detail for the simulation of SAR imaging of sea surface waves with Kelvin wake. Finally, several numerical results provide states of the effects of ship speed, wind speed and the ship sailing direction on the characteristics of Kelvin wake in SAR images. Thus, this simulation may enable us to provide a theoretical basis to the detection of ship wakes.

Citation


Jia-Kun Wang, Min Zhang, Jun-Long Chen, and Zhaohui Cai, "Application of Facet Scattering Model in SAR Imaging of Sea Surface Waves with Kelvin Wake," Progress In Electromagnetics Research B, Vol. 67, 107-120, 2016.
doi:10.2528/PIERB16022804
http://jpier.org/PIERB/pier.php?paper=16022804

References


    1. Holt, B., "SAR imaging of the ocean surface," Synthetic Aperture Radar Marine User's Manual, 25, C. R. Jackson and J. R. Apel, Eds., NOAA, Washington, 2004.

    2. Zhang, Y. D., L. N. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
    doi:10.2528/PIER09041905

    3. Liu, X. W., "Remote sensing image classification of the improved BP NN," Journal of Sustainable Development, Vol. 3, No. 4, 220-225, 2010.

    4. Lyden, J. D., R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, "Synthetic aperture radar imaging of surface ship wakes," J. Geophys. Res., Vol. 93, 12293-12303, 1988.
    doi:10.1029/JC093iC10p12293

    5. Reed, A. M. and J. H. Milgram, "Ship wakes and their radar images," Annual Review of Fluid Mechanics, Vol. 34, 469-502, 2002.
    doi:10.1146/annurev.fluid.34.090101.190252

    6. William, G. P., C. C. Pablo, C. W. Christopher, and S. F. Karen, "Ship and wake detection," Synthetic Aperture Radar Marine User's Manual, 277-303, C. R. Jackson and J. R. Apel, Eds., NOAA, Washington, 2004.

    7. Tunaley, J. K. E., E. H. Buller, K. H. Wu, and M. T. Rey, "The simulation of the SAR image of a ship wake," IEEE Trans. Geosci. Remote Sens., Vol. 29, 149-156, 1991.
    doi:10.1109/36.103305

    8. Oumansour, K., Y. Wang, and J. Saillard, "Multi-frequency SAR observation of a ship wake," IEE Proc. Radar, Sonar Navig., Vol. 143, No. 4, 275-280, 1996.
    doi:10.1049/ip-rsn:19960402

    9. Shemer, L., L. Kagan, and G. Zilman, "Simulation of ship wake image by an along-track interferometric SAR," Int. J. Remote Sens., Vol. 17, 3577-3597, 1996.
    doi:10.1080/01431169608949172

    10. Hennings, I., R. Romeiser, W. Alpers, and A. Viola, "Radar imaging of Kelvin arms of ship wakes," Int. J. Remote Sens., Vol. 20, 2519-2543, 1999.
    doi:10.1080/014311699211912

    11. Zilman, G., A. Zapolski, and M. Marom, "The speed and beam of a ship from its wake's SAR images," IEEE Trans. Geosci. Remote Sens., Vol. 42, 2335-2343, 2004.
    doi:10.1109/TGRS.2004.833390

    12. Wang, A.-M. and M.-H. Zhu, "Simulation of ship generated turbulent and vertical wake imaging by SAR," Journal of Electronics, Vol. 21, 64-71, 2004.

    13. Arnold-Bos, A., A. Khenchaf, and A. Martin, "Bistatic radar imaging of the marine environment --- Part II: Simulation and result analysis," IEEE Trans. Geosci. Remote Sens., Vol. 45, 3384-3396, 2007.
    doi:10.1109/TGRS.2007.899812

    14. Sun, R.-Q., G. Luo, M. Zhang, and C. Wang, "Electromagnetic scattering model of the Kelvin wake and turbulent wake by a moving ship," Waves in Random Media, Vol. 21, 501-514, 2011.
    doi:10.1080/17455030.2011.591446

    15. Zilman, G., A. Zapolski, and M. Marom, "On detectability of a ship's Kelvin wake in simulated SAR images of rough sea surface," IEEE Trans. Geosci. Remote Sens., Vol. 53, 609-619, 2014.

    16. Voronovich, A. G., Wave Scattering from Rough Surfaces, 2nd Ed., Springer-Verlag Berlin, Heidelberg, New York, 1999.
    doi:10.1007/978-3-642-59936-1

    17. Pinel, N. and C. Boulier, Electromagnetic Wave Scattering from Random Rough Surfaces: Asymptotic Models, Wiley-ISTE, 2013.
    doi:10.1002/9781118579152

    18. Soubret, A., G. Berginc, and C. Bourrely, "Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces," Physical Review B, Vol. 63, No. 24, 245411, 2001.
    doi:10.1103/PhysRevB.63.245411

    19. Elfouhaily, T. and C.-A. Guerin, "\A critical survey of approximate scattering wave theories from random rough surfaces," Waves in Random Media, Vol. 14, No. 4, R1-R40, 2004.
    doi:10.1088/0959-7174/14/4/R01

    20. Ulaby, F., R. Moore, and A. Fung, Microwave Remote Sensing: Active and Passive, Vol. 2 --- Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley, Advanced Book Program, Reading, MA, 1982.

    21. Voronovich, A., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, No. 3, 337-367, 1994.
    doi:10.1088/0959-7174/4/3/008

    22. Voronovich, A. and V. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random Media, Vol. 11, No. 3, 247-269, 2001.

    23. Tessendorf, J., "Simulating ocean water," Simulating Nature: Realistic and Interactive Techniques, ACM SIGGRAPH 2001 Course Notes, 2001.

    24. Elfouhaily, T., B. Chapron, and K. Katsaros, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res., Vol. 102, 15781-15796, 1997.
    doi:10.1029/97JC00467

    25. Fuks, I. M. and A. G. Voronovich, "Wave diffraction by rough interfaces in an arbitrary plane- layered medium," Wave in Random Media, Vol. 10, 253-272, 2000.

    26. Fuks, I. M., "Wave dirrfaction by a rough boundary of an arbitrary plane-layered medium," IEEE Trans. Antennas Propagat., Vol. 49, 630-639, 2001.
    doi:10.1109/8.923325

    27. Chen, H., M. Zhang, D. Nie, and C. C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface," Progress In Electromagnetics Research, Vol. 18, 347-363, 2009.
    doi:10.2528/PIERB09100508

    28. Arnold-Bos, A., A. Khenchaf, and A. Martin, "Bistatic radar imaging of the marine environment --- Part I: Theoretical background," IEEE Trans. Geosci. Remote Sens., Vol. 45, 3372-3383, 2007.
    doi:10.1109/TGRS.2007.897436

    29. Zhang, M., Y.-W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.

    30. Zurk, L. and W. Plant, "Comparison of actual and simulated synthetic aperture radar image spectra of ocean waves," J. Geophys. Res., Vol. 101, No. C4, 8913-8931, 1996.
    doi:10.1029/95JC03279

    31. Zhao, Y. W., M. Zhang, X. Geng, and P. Zhou, "A comprehensive facet model for bistatic SAR imagery of dynamic ocean scene," Progress In Electromagnetics Research, Vol. 123, 427-445, 2012.
    doi:10.2528/PIER11100910

    32. Newman, J. N., Marine Hydrodynamics, M.I.T. Press, Cambridge, Mass, 1977.