Vol. 67

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-04-07

Pattern Synthesis Using Hybrid Fourier-Neural Networks for IEEE 802.11 MIMO Application

By Elies Ghayoula, Ridha Ghayoula, Mohamed Haj-Taieb, Jean-Yves Chouinard, and Ammar Bouallegue
Progress In Electromagnetics Research B, Vol. 67, 45-58, 2016
doi:10.2528/PIERB16021601

Abstract

In this paper, the application of Artificial Neural Network (ANN) with back-propagation algorithm and weighted Fourier method are used for the synthesis of antenna arrays. The neural networks facilitate the modelling of antenna arrays by estimating the phases. The most important synthesis problem is to find the weights of the linear antenna array elements that are optimum to provide the radiation pattern with maximum reduction in the side lobe level. This technique is used to prove its effectiveness in improving the performance of the antenna array. To achieve this goal, antenna array for Wi-Fi IEEE 802.11a with frequency at 2.4 GHz to 2.5 GHz is implemented using Hybrid Fourier-Neural Networks method. To verify the validity of the technique, several illustrative examples of uniform excited array patterns with the main beam are placed in the direction of the useful signal. The neural network synthesis method not only allows to establish important analytical equations for the synthesis of antenna array, but also provides a great flexibility between the system parameters in input and output which makes the synthesis possible due to the explicit relation given by them.

Citation


Elies Ghayoula, Ridha Ghayoula, Mohamed Haj-Taieb, Jean-Yves Chouinard, and Ammar Bouallegue, "Pattern Synthesis Using Hybrid Fourier-Neural Networks for IEEE 802.11 MIMO Application," Progress In Electromagnetics Research B, Vol. 67, 45-58, 2016.
doi:10.2528/PIERB16021601
http://jpier.org/PIERB/pier.php?paper=16021601

References


    1. Yan, K. K. and Y. Lu, "Sidelobe reduction in array-pattern synthesis using genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 7, 1117-1122, July 2007.

    2. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2674-2679, August 2005.
    doi:10.1109/TAP.2005.851762

    3. Recioui, A., "Sidelobe level reduction in linear array pattern synthesis using particle swarm optimization," Jour. of Optimization Theory and Applic., Vol. 153, 497-512, 2012.
    doi:10.1007/s10957-011-9953-9

    4. Zhang, L., Y. C. Jiao, Z. B. Weng, and F. -S. Zhang, "Design of planar thinned arrays using a Boolean differential evolution algorithm," Microwaves Antennas and Propagation IET, Vol. 4, No. 12, 2172-2178, December 2010.
    doi:10.1049/iet-map.2009.0630

    5. Keizer, W. P. M. N., "Fast low sidelobe synthesis for large planar array antennas utilizing successive fast fourier transforms of the array factor," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 715-722, March 2007.
    doi:10.1109/TAP.2007.891511

    6. Keizer, W. P. M. N., "Linear array thinning using iterative fourier techniques," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 2211-2218, August 2008.

    7. Trastoy, A. and F. Ares, "Phase-only control of antenna sum patterns," Progress In Electromagnetics Research, Vol. 30, 47-57, 2001.
    doi:10.2528/PIER00012401

    8. Lee, K. C. and J. Y. Jhang, "\Application of electromagnetism-like algorithm to phase-only syntheses of antenna arrays," Progress In Electromagnetics Research, Vol. 83, 279-291, 2008.
    doi:10.2528/PIER08060402

    9. Carsten, H. S., T. F. Eibert, and T. A. Laitinen, "Hybrid fast fourier transform-plane wave based near-¯eld far-¯eld transformation for body of revolution, antenna measurement grids: The cylindrical case," IEEE International Symposium on Antennas and Propagation (APSURSI), 1628-1631, Spokane, WA, 2011.

    10. Sarevska, M., "Signal detection for neural network-based antenna array," Conf. NAUN'08 on Circuits, Systems, and Signals, 115-119, Marathon, Attica, Greece, June 2008.

    11. Barkat, O. and A. Benghalia, "Optimization of superconducting antenna arrays using RBF neural network," Int. J. Simul. Multidisci. Des. Optim., Vol. 4, 2010.

    12. Smida, A., R. Ghayoula, H. Trabelsi, A. Gharsallah, and D. Grenier, "Phased arrays in communication system based on taguchi-neural networks," Wiley International Journal of Communication Systems, John Wiley and Sons, September 2013.

    13. CST Microwave Studio, CST microwave studio 2013 by computer simulation technology, http://www.cst.com, 2013.

    14. Chang, D.-C., Y.-J. Li, and C.-H. Liao, "Antenna array for IEEE 802.11/a/b MIMO application," PIERS Proceedings, 100-102, Moscow, Russia, August 19-23, 2012.

    15. Kunis, S. and D. Potts, "Time and memory requirements of the nonequispaced FFT," Sampling Theory in Signal and Image Processing, Vol. 7, 77-100, 2008.

    16. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
    doi:10.2528/PIERB08092303

    17. Gotsis, K. A., K. Siakavara, and J. N. Sahalos, "On the direction of arrival (DoA) estimation for a switched-beam antenna system using neural networks," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1399-1411, May 2009.
    doi:10.1109/TAP.2009.2016721

    18. Vakula, D. and N. V. S. N. Sarma, "Using neural networks for fault detection in planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 14, 21-30, 2010.
    doi:10.2528/PIERL10030401

    19. Reza, S. and C. G. Christodoulou, "Beam shaping with antennas arrays using neural netsworks," IEEE South East Conf., Orlando, Florida, April 1998.

    20. Merad, L., F. T. Bendimerad, S. M. Meriah, and S. A. Djennas, "Neural networks for synthesis and optimization of antenna arrays," Radioengineering, Vol. 16, No. 1, April 2007.

    21. Keizer, W. P. M. N., "Low-sidelobe pattern synthesis using iterative fourier techniques coded in MATLAB," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 2, 137-150, April 2009.
    doi:10.1109/MAP.2009.5162038

    22. Sophocles, J. O., Electromagnetic Waves and Antennas, Vol. 21, Rutgers University, June 2004.

    23. Abed, A. T., "Study of radiation properties in Taylor distribution uniform spaced backfire antenna arrays," American Journal of Electromagnetics and Applications, Vol. 2, No. 3, 23-26, May 2014.
    doi:10.11648/j.ajea.20140203.11

    24. Fadlallah, N., L. Gargouri, A. Hammami, R. Ghayoula, A. Gharsallah, and B. Granado, "Antenna array synthesis with Dolph-Chebyshev method," 11th Mediterranean Microwave Symposium (MMS 2011), Yasmine Hammamet, Tunisia, September 8-10, 2011.

    25. Marcano, D., M. Jiminez, and O. Chang, "Synthesis of linear array using Schelkunoff's method and genetic algorithms," Antennas and Propagation Society International Symposium, 1996, AP-S. Digest, Vol. 2, No. 3, 814-817, Baltimore, MD, USA, July 21, 1996.

    26. Marcano, D. and F. T. Duran, "Synthesis of antenna arrays using genetic algorithms," IEEE Antennas and Propagation Magazine, Vol. 42, No. 3, 12-20, August 06, 2002.
    doi:10.1109/74.848944