Vol. 62
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-01-21
Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Machines Using Hybrid Magnet Shapes
By
Progress In Electromagnetics Research B, Vol. 62, 49-61, 2015
Abstract
This paper deals with the magnet pole shape design for the minimization of cogging torque in permanent magnet synchronous machines (PMSM). New shapes of permanent magnet are proposed. The magnet shape is modeled analytically by a set of stacked and well dimensioned layers relatively to the height and opening angle. The final shape of magnet is configured by using three models in view of obtaining lower magnitude of cogging torque. A 2-D exact analytical solution of magnetic field distribution taking into account the shape of magnet, the irregular mechanical thickness of air-gap and semi-closed stator slots is established. The influence of motor's parameters such as the number of stator slots per pole and per phase and PM's magnetization on cogging torque is discussed. Analytical results are validated by the static finite-element method (FEM).
Citation
Ladghem-Chikouche Brahim, Kamel Boughrara, and Rachid Ibtiouen, "Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Machines Using Hybrid Magnet Shapes," Progress In Electromagnetics Research B, Vol. 62, 49-61, 2015.
doi:10.2528/PIERB14112302
References

1. Boughrara, K., B. Ladghem Chikouche, R. Ibtiouen, D. Zarko, and O. Touhami, "Analytical analysis of slotted air-gap surface mounted permanent-magnet synchronous motor with magnet bars magnetized in shifting direction," IEEE Trans. Magn., Vol. 45, No. 2, 747-758, Feb. 2009.
doi:10.1109/TMAG.2008.2008751

2. Laskaris, K. I. and A. G. Kladas, "Permanent-magnet shape optimization effects on synchronous motor performance," IEEE Trans. Ind. Elect., Vol. 58, No. 9, 3776-3783, Sep. 2011.
doi:10.1109/TIE.2010.2093481

3. Ashabani, M., Y. Abdel-Rady, and I. Mohamed, "Multiobjective shape optimization of segmented pole permanent-magnet synchronous machines with improved torque characteristic," IEEE Trans. Magn., Vol. 47, No. 4, 795-804, Apr. 2011.
doi:10.1109/TMAG.2010.2104327

4. Pang, Y., Z. Q. Zhu, and Z. J. Feng, "Cogging torque in cost-effective surface-mounted permanentmagnet machines," IEEE Trans. Magn., Vol. 47, No. 9, 2269-2276, Sep. 2011.
doi:10.1109/TMAG.2011.2147326

5. Islam, R., I. Husain, A. Fardoun, and K. McLaughlin, "Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction," IEEE Trans. Ind. Appl., Vol. 45, No. 1, 152-160, Jan./Feb. 2009.
doi:10.1109/TIA.2008.2009653

6. Shin, P. S., S. H. Woo, and C. S. Koh, "An optimal design of large scale permanent magnet pole shape using adaptive response surface method with latin hypercube sampling strategy," IEEE Trans. Magn., Vol. 45, No. 3, 1214-1217, Mar. 2009.
doi:10.1109/TMAG.2009.2012565

7. Chabchoub, M., I. B. Salah, G. Krebs, R. Neji, and C. Marchand, "PMSMcogging torque reduction: Comparison between different shapes of magnet," First International Conference of Renewable Energies and Vehicular Technology, 206-211, 2012.
doi:10.1109/REVET.2012.6195272

8. Oh, S., S. Min, and J. Hong, "Air gap flux density waveform design of surface-mounted permanent magnet motor considering magnet shape and magnetization direction," IEEE Trans. Magn., Vol. 49, No. 5, 2393-2396, May 2013.
doi:10.1109/TMAG.2013.2246142

9. Guemes, J. A., A. M. Iraolagoitia, J. I. Del Hoyo, and P. Fernandez, "Torque analysis in permanent-magnet synchronous motors: A comparative study," IEEE Trans. Energy Convers., Vol. 26, No. 1, 55-63, Mar. 2011.
doi:10.1109/TEC.2010.2053374

10. Sung, S. J., S. J. Park, and G. H. Jang, "Cogging torque of brushless DC motors due to the interaction between the uneven magnetization of a permanent magnet and teeth curvature," IEEE Trans. Magn., Vol. 47, No. 7, 1923-1928, Jul. 2011.
doi:10.1109/TMAG.2011.2120599

11. Tudorache, T. and I. Trifu, "Permanent-magnet synchronous machine cogging torque reduction using a hybrid model," IEEE Trans. Magn., Vol. 48, No. 10, 2627-2632, Oct. 2012.
doi:10.1109/TMAG.2012.2198485

12. Jiang, X., J. Xing, Y. Li, and Y. Lu, "Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors," IEEE Trans. Magn., Vol. 45, No. 10, 4601-4604, Oct. 2009.
doi:10.1109/TMAG.2009.2022639

13. Boughrara, K., T. Lubin, R. Ibtiouen, and M. N. Benallal, "Analytical calculation of parallel double excitation and spoke-type permanent magnet motors; simplified versus exact model," Progress In Electromagnetics Research B, Vol. 47, 145-178, 2013.
doi:10.2528/PIERB12111306

14. Lubin, T., S. Mezani, and A. Rezzoug, "Improved analytical model for surface mounted PM motors considering slotting effects and armature reaction," Progress In Electromagnetics Research B, Vol. 25, 293-314, 2010.
doi:10.2528/PIERB10081209

15. Dubas, F. and C. Espanet, "Analytical solution of the magnetic field in permanent-magnet motors taking into account slotting effect: No-load vector potential and flux density calculation," IEEE Trans. Magn., Vol. 45, No. 5, 2097-2109, May 2009.
doi:10.1109/TMAG.2009.2013245

16. Wu, L. J., Z. Q. Zhu, D. A. Staton, M. Popescud, and D. Hawkins, "Comparison of analytical models of cogging torque in surface-mounted PM machines," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2414-2425, Jun. 2012.
doi:10.1109/TIE.2011.2143379

17. Zarko, D., D. Ban, and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance," IEEE Trans. Magn., Vol. 42, No. 7, 1828-1837, Jul. 2006.
doi:10.1109/TMAG.2006.874594

18. Tavana, N. R. and A. Shoulaie, "Analysis and design of magnetic pole shape in linear permanent-magnet machine," IEEE Trans. Magn., Vol. 46, No. 4, 1000-1006, Apr. 2010.
doi:10.1109/TMAG.2009.2037951

19. Jeffrey, A., Advanced Engineering Mathematics, University of Newcastle-upon-Tyne, Harcourt/Academic Press, 2002.

20. Meeker, D. C., , Finite Element Method Magnetics, Version 4.2, Apr. 2009 Build, http://www.femm.info.

21. Li, Y., J. Xing, T.Wang, and Y. Lu, "Programmable design of magnet shape for permanent-magnet synchronous motors with sinusoidal back EMF waveforms," IEEE Trans. Magn., Vol. 44, No. 9, 2163-2167, Sep. 2008.
doi:10.1109/TMAG.2008.2000750

22. Shah, S. Q. A., T. A. Lipo, and B.-I. Kwon, "Modeling of novel permanent magnet pole shape SPM motor for reducing torque pulsation," IEEE Trans. Magn., Vol. 48, No. 11, 4626-4629, Nov. 2012.
doi:10.1109/TMAG.2012.2197188

23. Jang, S.-M., H.-I. Park, J.-Y. Choi, K.-J. Ko, and S.-H. Lee, "Magnet pole shape design of permanent magnet machine for minimization of torque ripple based on electromagnetic field theory," IEEE Trans. Magn., Vol. 47, No. 10, 3586-3589, Oct. 2011.
doi:10.1109/TMAG.2011.2151846

24. Chaithongsuk, S., B. Nahid-Mobarakeh, N. Takorabet, J. P. Caron, and F. Meibody-Tabar, "Optimal design of PM motors to achieve efficient flux weakening strategy in variable speed control applications," XIX International Conference on Electrical Machines — ICEM, 1-6, Rome, 2010.

25. Chu, W. Q. and Z. Q. Zhu, "Investigation of torque ripples in permanent magnet synchronous machines with skewing," IEEE Trans. Energy Convers., Vol. 49, No. 3, 1211-1220, Mar. 2013.

26. Shen, Y. and Z. Q. Zhu, "Analysis of electromagnetic performance of Halbach PM brushless machines having mixed grade and unequal height of magnets," IEEE Trans. Energy Convers., Vol. 49, No. 4, 1461-1469, Apr. 2013.