Vol. 61
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-12-03
Design and Implementation of a Compact Practical Passive Beam-Forming Matrix for 3D S-Band Radar
By
Progress In Electromagnetics Research B, Vol. 61, 225-239, 2014
Abstract
In this paper a compact two-layer microstrip passive beam-forming matrix in the 2.9-3.1 GHz frequency band is designed, fabricated, and measured. This 13×6 matrix is a passive circuit that can transform the 13 patterns of an antenna array into six possible beams to decrease the complexity for multiplexing /demultiplexing operation in three dimensional Radar. The 90 degrees hybrid couplers with high isolation between two signals and phase shifters between the couplers are used to provide proper signals in outputs. The matrix structure consists of metal walls around transmission lines to eliminate the surface waves. Also, a coaxial to microstrip transition is used to extract accurate measurement results. A special box is designed to cover matrix which has many design considerations such as cutoff frequency, destructive effects on couplers and other parts of matrix, and all of these effects are analyzed and considered to achieve the optimum performance in this paper. The matrix is designed on a substrate Rogers RT5880 with εr=2.2, substrate height=0.787 mm, and loss tangent=0.0009. Also the thickness of the copper cladding layer is 17 um. The maximum amplitude and phase errors in outputs are 0.6 dB and 7˚, respectively and VSWRs are less than 1.35 in the matrix bandwidth with at least 20 dB isolation between all ports.
Citation
Hamid Mirmohammad Sadeghi, Mehdi Moradianpour, Maziar Hedayati, Gholamreza Askari, and Parisa Moslemi, "Design and Implementation of a Compact Practical Passive Beam-Forming Matrix for 3D S-Band Radar," Progress In Electromagnetics Research B, Vol. 61, 225-239, 2014.
doi:10.2528/PIERB14091401
References

1. Luneburg, R., Mathematical Theory of Optics, Brown Univ., Providence, RI, USA, 1944.

2. Rotman, W. and R. F. Turner, "Wide-angle microwave lens for linesource applications," IEEE Trans. Antennas Propag., Vol. 11, No. 11, 623-632, Nov. 1963.

3. Mazzolla, V. and J. E. Becker, "Coupler-type bend for pillbox antennas," IEEE Trans. Microw. Theory Techn., Vol. 15, No. 8, 462-468, Aug. 1967.
doi:10.1109/TMTT.1967.1126504

4. Ettorre, M., R. Sauleau, and L. Le Coq, "Multi-beam multi-layer leaky wave SIW pillbox antenna for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1093-1100, Apr. 2011.
doi:10.1109/TAP.2011.2109695

5. Ettorre, M., R. Sauleau, L. Le Coq, and F. Bodereau, "Single-folded leaky-wave antennas for automotive radars at 77 GHz," IEEE Antennas Wireless Propag. Lett., Vol. 9, 859-862, Sep. 2010.
doi:10.1109/LAWP.2010.2071850

6. Dong, J., A. I. Zaghloul, R. Sun, C. J. Reddy, and S. J. Weiss, "Rotman lens amplitude, phase, and pattern evaluations by measurements and full wave simulations," Appl. Comput. Electromagn. (ACES) J., Vol. 24, No. 6, 267-276, 2009.

7. Dong, J., A. I. Zaghloul, and R. Rotman, "Non-focal minimum phase-error planar Rotman lenses," URSI National Radio Science Meeting, Colorado, 2008.

8. Dong, J. and A. I. Zaghloul, "Method and computer aided investigation of microwave lens for 360-degree scanning," IEEE Int. Symp. on Antennas Propagation, Charleston, SC, 2009.

9. Dong, J. and A. I. Zaghloul, "Implementation of microwave lens for 360-degree scanning," IEEE Int. Symp. on Antennas Propagation, Charleston, SC, 2009.

10. Blass, J., "Multidirectional antenna — A new approach to stackedbeams," IRE Int. Convention Rec., Vol. 8, 48-50, New York, USA, Mar. 1966.

11. Fonseca, N. J. G., "Printed-band 4 × 4 Nolen matrix for multiple beam antenna applications," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1673-1678, Jun. 2009.
doi:10.1109/TAP.2009.2019919

12. Butler, J. and R. Lowe, "Beam forming matrix simplifies design of electronically scanned antennas," Electron. Design, Vol. 9, 170-173, Apr. 1961.

13. Moody, H. J., "The systematic design of the Butler matrix," IEEE Trans. Antennas Propag., Vol. 12, No. 6, 786-788, Nov. 1964.
doi:10.1109/TAP.1964.1138319

14. Foster, H. E. and R. E. Hiatt, "Butler network extension to any number of antenna ports," IEEE Trans. Antennas Propag., Vol. 18, No. 6, 818-820, Nov. 1970.
doi:10.1109/TAP.1970.1139790

15. Ohira, T. and K. Gyoda, "Hand-held microwave direction-of-arrival finder based on varactor-tuned analog aerial beamforming," Asia-Pacific Microwave Conference, 585-588, Dec. 3-6, 2001.

16. Parvazi, P., A. B. Gershman, and Y. I. Abramovich, "Detecting outliers in the estimator bank-based direction finding techniques using the likelihood ratio quality assessment," IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 2, II-1065-II-1068, Apr. 15–20, 2007.

17. Bellion, A., C. Le Meins, A. Julien-Vergonjanne, and T. Monediere, "Generation of calibration tables for direction finding antennas using FEKO," 24th Annual Review of Progress in Applied Computational Electromagnetics, 903-908, Mar. 2008.

18. Gething, P. J. D., "High-frequency direction finding," Proceedings of the Institution of Electrical Engineers, Vol. 113, No. 1, 49-61, Jan. 1966.
doi:10.1049/piee.1966.0007

19. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," Electron. Design, Vol. 9, 170-173, Apr. 1961.

20. Davies, D. E. N., "Application of electronic sector scanning techniques to height-finding radar systems," Proceedings of the Institution of Electrical Engineers, Vol. 110, No. 11, 1941-1948, Nov. 1963.
doi:10.1049/piee.1963.0273

21. Moghaddam, M., Y. Rahmat-Samii, P. Partridge, L. van Nieuwstadt, J. Vitaz, M. Haynes, J. Huang, and V. Cable, "Dual polarized UHF/VHF honey COMB stacked-patch feed array for a large-aperture space-borne radar antenna," 2007 IEEE Aerospace Conference, 1-10, Mar. 3-10, 2007.

22. Allen, C., "Vari-focal reflector design for a stacked-beam antenna," Antennas and Propagation Society International Symposium, 1975, Vol. 13, 101-104, Jun. 1975.
doi:10.1109/APS.1975.1147400

23. Yang, G., M. Ali, and R. Dougal, "A multi-functional stacked patch antenna for wireless power beaming and data telemetry," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 2A, 359-362, Jul. 3-8, 2005.

24. Byun, W., B.-S. Kim, K.-S. Kim, and M.-S. Song, "Design of switched beam-forming antenna using stacked microstrip patch with cavity and butler matrix for 60 GHz WPAN application," 2007 IEEE Antennas and Propagation Society International Symposium, 3640, Jun. 9-15, 2007.

25. Daneshmand, M., L. Shafai, and P. Mousavi, "Beam scanning using the stacked microstrip antenna parameters," 2002 IEEE Antennas and Propagation Society International Symposium, Vol. 2, 10-13, 2002.

26. Blass, J., "Multidirectional antenna — A new approach to stacked beams," IRE International Convention Record, Vol. 8, 48-50, Mar. 1966.

27. Gruszczynski, S., K. Wincza, and K. Sachse, "Design of compensated coupled-stripline 3-dB directional couplers, phase shifters and magic-Ts — Part I: Single-section coupled-line circuits," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 11, 3986-3994, Nov. 2006.
doi:10.1109/TMTT.2006.884689

28. Wait, J. R., Electromagnetic Waves in Stratified Media, IEEE Press, New York, 1996.

29. Davis, V. B., J. T. Williams, D. R. Jackson, S. A. Long, and S. Jiang, "Effect of ground plane size on radiation patterns of reduced surface wave antennas," IEEE Trans. Antennas Propagat., to be published.

30. Bhattacharyya, A. K., "Characteristics of space and surface-waves in amultilayered structure," IEEE Trans. Antennas Propagat., Vol. 38, 1231-1238, Aug. 1990.
doi:10.1109/8.56959

31. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media — Part I: Theory," IEEE Trans. Antennas Propagat., Vol. 38, 335-344, Mar. 1990.
doi:10.1109/8.52240

32. Itoh, T., "Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 28, 733-736, Jul. 1980.

33. Foudazi, A. and A. R. Mallahzadeh, "Pattern synthesis for multi-feed reflector antennas using invasive weed optimisation," IET Microwaves, Antennas & Propagation, Vol. 6, No. 14, 1583-1589, Nov. 20, 2012.
doi:10.1049/iet-map.2012.0045