Vol. 60
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-05-26
Hrr Profiles Time-Frequency Non-Negative Sparse Coding for SAR Target Classification
By
Progress In Electromagnetics Research B, Vol. 60, 63-77, 2014
Abstract
A new approach to classify synthetic aperture radar (SAR) targets is presented based on high range resolution (HRR) profiles time-frequency matrix non-negative sparse coding (NNSC). Firstly, SAR target images have been converted into HRR profiles. And the non-negative time-frequency matrix for each of the profiles is obtained by using an adaptive Gaussian representation (AGR). Secondly, NNSC is applied to learn target time-frequency basis of the training set. Feature vectors are constructed by projecting each HRR profile time-frequency matrix to low dimensional time-frequency basis space. Finally, the target classification decision is found with support vector machine and nearest neighbor algorithm respectively. To demonstrate the performance of the proposed approach, experiments are performed with Moving and Stationary Target Acquisition and Recognition (MSTAR) public release SAR database. The experimental results support the effectiveness of the proposed technique for SAR target classification.
Citation
Xinzheng Zhang, Qizheng Wu, Shujun Liu, Jianhong Qin, and Wei Song, "Hrr Profiles Time-Frequency Non-Negative Sparse Coding for SAR Target Classification," Progress In Electromagnetics Research B, Vol. 60, 63-77, 2014.
doi:10.2528/PIERB14040401
References

1. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth nlcs principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

2. Chiang, C.-Y., Y.-L. Chang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

3. Dudgeon, D.-E. and R.-T. Lacoss, "An overview of automatic target recognition," The Lincoln Laboratory Journal, Vol. 6, 3-9, 1993.

4. Zhao, Q. and J.-C. Principe, "Support vector machines for SAR automatic target recognition," IEEE Trans. on Aerospace and Electronic Systems, Vol. 37, No. 2, 643-654, 2001.
doi:10.1109/7.937475

5. Zhao, Q., J. C. Principe, V. L. Brennan, D. Xu, and Z. Wang, "Synthetic aperture radar automatic target recognition with three strategies of learning and representation," Optical Engineering, Vol. 39, 1230-1236, 2000.
doi:10.1117/1.602495

6. Huan, R.-H. and Y. Pan, "Target recognition for multi-aspect SAR images with fusion strategies," Progress In Electromagnetics Research, Vol. 134, 267-288, 2013.
doi:10.2528/PIER12100304

7. Papson , S. and R.-M. Narayanan, "Classification via the shadow region in SAR imagery," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, No. 2, 969-980, 2012.
doi:10.1109/TAES.2012.6178042

8. Potter, L.-C. and R.-L. Moses, "Attributed scattering centers for SAR ATR," IEEE Trans. on Image Processing, Vol. 6, No. 1, 79-91, 1997.
doi:10.1109/83.552098

9. Liao, X.-J., P. Runkle, and L. Carin, "Identification of ground targets from sequential high-range-resolution radar signatures," IEEE Trans. on Aerospace and Electronic Systems, Vol. 38, No. 4, 1230-1242, 2002.
doi:10.1109/TAES.2002.1145746

10. Wong, S., "High range resolution profiles as motion-invariant features for moving ground targets identification in SAR-based automatic target recognition," IEEE Trans. on Aerospace and Electronic Systems, Vol. 45, No. 3, 1017-1039, 2009.
doi:10.1109/TAES.2009.5259180

11. Albrecht, T. W. and S. C. Gustafson, "Hidden Markov models for classifying SAR target images," Proceedings of SPIE, Algorithms for Synthetic Aperture Radar Imagery XI, Vol. 5427, Orlando, FL, USA, Apr. 2004..

12. Nishimoto, M., X. Liao, and L. Carin, "Target identification from multi-aspect high range-resolution radar signatures using a hidden Markov model," IEICE Trans. Electronics, Vol. 87, 1706-1714, 2004.

13. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

14. Kim, K. T., I. S. Choi, and H. T. Kim, "Efficient radar target classification using adaptive joint time-frequency processing," IEEE Trans. on Antennas and Propagation, Vol. 2, No. 48, 1789-1801, 2000.

15. Thayaparan, T., P. Suresh, S. Qian, K. Venkataramaniah, S. SivaSankaraSai, and K. Sridharan, "Micro-Doppler analysis of a rotating target in synthetic aperture radar," IET Signal Processing, Vol. 4, 245-255, 2010.
doi:10.1049/iet-spr.2009.0094

16. Olshausen, B. A., "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, Vol. 381, 607-609, 1996.
doi:10.1038/381607a0

17. Wright, J., A.-Y. Yang, A. Ganesh, S.-S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 31, No. 2, 210-227, 2009.
doi:10.1109/TPAMI.2008.79

18. Zhang, H., N.-M. Nasrabadi, Y. Zhang, and T.-S. Huang, "Multi-view automatic target recognition using joint sparse representation," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, No. 3, 2481-2497, 2012.
doi:10.1109/TAES.2012.6237604

19. Liu, H., C. Liu, and Y. Huang, "Adaptive feature extraction using sparse coding for machinery fault diagnosis," Mechanical Systems and Signal Processing,, Vol. 25, 558-574, 2011.
doi:10.1016/j.ymssp.2010.07.019

20. Murray, J. F. and K. Kreutz-Delgado, "Learning sparse overcomplete codes for images," The Journal of VLSI Signal Processing, Vol. 45, 97-110, 2006.
doi:10.1007/s11265-006-9774-5

21. Wang, Y., Q. Song, T. Jin, Y. Shi, and X.-T. Huang, "Sparse time-frequency representation based feature extraction method for landmine discrimination," Progress In Electromagnetics Research, Vol. 133, 459-475, 2013.
doi:10.2528/PIER12082104

22. Hoyer, P. O., "Modeling receptive fields with non-negative sparse coding," Neurocomputing, Vol. 52, 547-552, 2003.
doi:10.1016/S0925-2312(02)00782-8

23. Schmidt, M. N., J. Larsen, and F. T. Hsiao, "Wind noise reduction using non-negative sparse coding," Proceedings of IEEE Workshop on Machine Learning for Signal Processing, 431-436, 2007.

24. Tan, C.-P., J.-Y. Koay, K.-S. Lim, H.-T. Ewe, and H.-T. Chuah, "Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique," Progress In Electromagnetics Research, Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903

25. Zhang, Y., S.Wang, and Z. Dong, "Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree," Progress In Electromagnetics Research, Vol. 144, 171-184, 2014.
doi:10.2528/PIER13121310

26. Angiulli, G., D. De Carlo, G. Amendola, E. Arnieri, and S. Costanzo, "Support vector regression machines to evaluate resonant frequency of elliptic substrate integrate waveguide resonators," Progress In Electromagnetics Research, Vol. 83, 107-118, 2008.
doi:10.2528/PIER08041803

27. Ross, T. D., S. W. Worrell, V. J. Velten, J. C. Mossing, and M. L. Bryant, "Standard SAR ATR evaluation experiments using the MSTAR public release data set," Proceedings of SPIE, Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, 566-570, 1998.
doi:10.1117/12.321859

28. Guillamet, D., B. Schiele, and J. Vitria, "Analyzing non-negative matrix factorization for image classification," Proceedings of 16th International Conference on Pattern Recognition, 116-119, 2002.
doi:10.1109/ICPR.2002.1048251