Vol. 59
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-04-11
Effect of Snow Density Irregularities on Radar Backscatter from a Layered Dry Snow Pack
By
Progress In Electromagnetics Research B, Vol. 59, 181-191, 2014
Abstract
The contribution of electromagnetic wave scattering on density irregularities in the volume component of radar backscatter was analyzed for a thick snow pack containing internal hoar/ice layers. To evaluate the effect of this scattering, Density Deviation Factor (DDF), a statistical parameter, was introduced into the backscattering coefficient using the ``slice'' approach. DDF is proportional to the intensity of the density fluctuation and inverse to the mean density. The inverse dependence of backscatter with accumulation rate was discussed based on the DDF parameterization of snow inhomogeneities.
Citation
Boris S. Yurchak, "Effect of Snow Density Irregularities on Radar Backscatter from a Layered Dry Snow Pack," Progress In Electromagnetics Research B, Vol. 59, 181-191, 2014.
doi:10.2528/PIERB14022403
References

1. Shuman, C. A., D. H. Bromwich, J. Kipfstuhl, and M. Schwanger, "Multiyear accumulation and temperature history near the North Greenland Ice Core Project site, north central Greenland," J. Geophys. Res., Vol. 106, No. D24, 33853-33866, 2001.
doi:10.1029/2001JD900197

2. Zahnen, N., F. Jung-Rothenhausler, H. Oerter, F. Wilhelms, and H. Miller, "Correlation between Antarctic dry snow properties and backscattering characteristics in radarsat SAR imagery," Proceedings of EARSeL-LISSIG Workshop Observing Our Cryosphere from Space, 140-148, Bern, Mar. 11-13, 2002.

3. Karkas, E., T. Martma, and E. Sounninen, "Physical properties and stratigraphy of surface snow in western Droning Maud Land, Antarctica," Polar Research, Vol. 24, No. 1-2, 55-67, 2005.
doi:10.1111/j.1751-8369.2005.tb00140.x

4. Godio, A., "Georadar measurements for the snow cover density," American Journal of Applied Sciences, Vol. 6, No. 3, 414-423, 2009.
doi:10.3844/ajassp.2009.414.423

5. Langley, K., P. Lacroix, S.-E. Hamran, and O. Brandt, "Sources of backscatter at 5.3 GHz from a superimposed ice and ˉrn area revealed by multi-frequency GPR and cores," J. Glaciology, Vol. 55, No. 190, 373-383, 2009.
doi:10.3189/002214309788608660

6. Hawley, R. L., E. M. Morris, R. Cullen, U. Nixdorf, A. P. Shepherd, and D. J. Wingham, "ASIRAS airborne radar resolves internal annual layers in the dry-snow zone of Greenland," Geoph. Res. Lett., Vol. 33, L04502, 2006, Doi: 10.1029/2005GL025147.

7. Kanagaratnam, P., S. P. Gogineni, N. Gundestrup, and L. Larsen, "High resolution radar mapping on internal layers at the North Greenland Ice Core Project," J. Geophys. Res., Vol. 106, No. D24, 33799-33811, 2001.
doi:10.1029/2001JD900191

8. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive, from Theory to Applications, Volume III, Artech House, Inc., Norwood, 1986.

9. Fung, A., Microwave Scattering and Emission Models and Their Applications, Artech House, New York, 1994.

10. Wismann, V., D. P. Winebrenner, K. Boehnke, and R. J. Arthern, "Snow accumulation on Greenland estimated from ERS scatterometer data," Proceedings of the IGARSS' 97, Vol. 4, 1823-1825, Singapore, Aug. 3-8, 1997.

11. Matzler, C., "Improved born approximation for scattering in a granular medium," J. Appl. Phys., Vol. 83, 6111-6117, 1998.
doi:10.1063/1.367496

12. Forster, R. R., K. C. Jezek, J. Bolzan, F. Baumgarner, and S. P. Gogineni, "Relationships between radar backscatter and accumulation rates in the Greenland ice sheet," Int. J. Remote Sens., Vol. 20, No. 15-16, 3131-3147, 1999.
doi:10.1080/014311699211660

13. Bingham, A. W. and M. R. Drinkwater, "Recent changes in the microwave scattering properties of the Antarctic ice sheet," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1810-1820, 2000.
doi:10.1109/36.851765

14. Hoen, E. W., "A correlation-based approach to modeling interferometric radar observations of the Greenland ice sheet,", Ph.D. Thesis, Stanford University, 2001.

15. Tsang, L., J. Pan, D. Liang, Z. X. Li, D. Cline, and Y. H. Tan, "Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple scattering effects," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 4, 990-1004, 2007.
doi:10.1109/TGRS.2006.888854

16. Xu, X., D. Liang, L. Tsang, K. M. Andreadis, E. G. Josberger, D. P. Lettenmaier, D. W. Cline, and S. H. Yueh, "Active remote sensing of snow using NMM3D/DMRT and comparison with CLPX-II airborne data," IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, No. 4, 689-697, 2010.
doi:10.1109/JSTARS.2010.2053919

17. Kendra, J. R., K. Sarabandi, and F. T. Ulaby, "Radar measurement of snow: Experiment and analysis," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 864-879, 1998.
doi:10.1109/36.673679

18. Ruiz, C., "Feasibility study of imaging the Antarctic ice using a space-borne P-band radar,", WP 200: Electromagnetic Model Review Document, ESA Contract No. 18195/04/NL/CB, 2005.

19. Marshall, J. S. and W. Hitchfeld, "Interpretation of the fluctuating echo from randomly distributed scatterers," Can. J. Phys., Vol. 31, No. 6, 962-994, 1953.
doi:10.1139/p53-084

20. Smith, Jr., P. L., "Scattering of microwave by cloud droplets," Proceedings of 11th Weather Radar Conf., 201-207, Boulder, Colorado, Sep. 14-18, 1964.

21. Yurchak, B. S., "Radar volume backscatter from spatially extended geophysical targets in a `slice' approach," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 11, 3690-3696, 2009, Doi: 10.1109/TGRS.2009.2015444.
doi:10.1109/TGRS.2009.2015444

22. Vickers, R. S. and G. C. Rose, "High resolution measurements of snowpack stratigraphy using a short pulse radar,", Vol. I, 261-267, Proceedings of the 8th International Symposium on Remote Sensing of Environment.

23. Ellerbruch, D. A. and H. S. Boyne, "Snow stratigraphy and water equivalence measured with an active microwave system," J. Glaciology, Vol. 26, No. 94, 225-233, 1980.

24. Yurchak, B. S., "Some features of the volume component of radar backscatter from thick and dry snow cover," Advances in Geoscience and Remote Sensing, G. Jedlovec (ed.), 93{140, In-Tech, Vukovar, 2009.

25. Rott, H., K. Sturm, and H. Miller, "Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data," Ann. Glaciol., Vol. 17, 337-343, 1993.

26. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Radar Remote Sensing and Surface Scattering and Emission Theory, Volume II, Artech House, Norwood, MA, 1992.

27. Long, D. G. and M. R. Drinkwater, "Greenland ice-sheet surface properties observed by the Seasat --- A scatterometer at enhanced resolution," J. Glaciology, Vol. 40, 213-230, 1994.

28. Eom, H. J. and W.-M. Boerner, "A re-examination of radar terrain backscattering at nadir," IEEE Trans. Geosci. Remote Sens., Vol. 24, No. 2, 232-234, 1986.
doi:10.1109/TGRS.1986.289642

29. West, R. D., D. P. Winebrenner, L. Tsang, and H. Rott, "Microwave emission from density-stratified Antarctic firn at 6 cm wavelength," J. Glaciology, Vol. 42, No. 140, 63-76, 1986.

30. Paren, J. G., "Reflection coe±cient at a dielectric interface," J. Glaciology, Vol. 27, No. 95, 203-204, 1981.

31. Atlas, D., "Advances in radar meteorology," Adv. Geophys., Vol. 10, 317-478, 1964.
doi:10.1016/S0065-2687(08)60009-6

32. Kendall, M. G., Advanced Theory of Statistics, Volume 1, 6th Edition, Arnold, Stuart & Ord., London , 1968.

33. Tiuri, M. E., A. H. Sihvola, E. G. Nyfors, and M. T. Hallikainen, "The complex dielectric constant of snow at microwave frequencies," IEEE J. Ocean. Engin., Vol. 9, No. 5, 377-382, 1984.
doi:10.1109/JOE.1984.1145645

34. Gow, A. J., "Deep core studies of the accumulation and densification of snow at Byrd Station and ittle America V, Antarctica,", CRREL Research Report, 197, 1968.

35. Rotschky, G., W. Rack, W. Dierking, and H. Oerter, "Retrieving snowpack properties and accumulation estimates from a combination of SAR and scatterometer measurements," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 4, 943-956, 2006.
doi:10.1109/TGRS.2005.862524

36. Holmlund, P., K. Gjerde, N. Gundestrup, M. Hansson, E. Isaksson, L. Karlof, M. Nyman, R. Pettersson, F. Pinglot, C. H. Reijmer, M. Stenberg, M. Thomassen, R. S. W. van de Wal, C. Veen, F. Wilhelms, and J. G. Winther, "Spatial gradients in snow layering and 10m temperatures at two EPICA-Dronning Maud Land (Antarctica) pre-site-survey drill sites," Ann. Glaciol., Vol. 30, 13-19, 2000.
doi:10.3189/172756400781820796

37. Winebrenner, D. P., R. J. Arthern, and C. A. Shuman, "Mapping Greenland accumulation rates using observations of thermal emission at 4.5-cm wavelength," J. Geophys. Res., Vol. 106, No. D24, 33919-33924, 2001.
doi:10.1029/2001JD900235

38. Schlosser, E. and H. Oerter, "Shallow firn cores from Neumayer, Ekstromisen, Antarctica: A comparison of accumulation rates and stable-isotope rations," Ann. Glaciol., Vol. 35, 91-96, 2002.
doi:10.3189/172756402781816915

39. Quin, D. and N. W. Young, "Characteristics of the initial densification of snow/firn in Wilks land, east Antarctica," Ann. Glaciol., Vol. 11, 209, 1988.

40. Li, J. and J. Zwally, "Modeling the density variation in the shallow firn layer," Ann. Glaciol., Vol. 38, 309-313, 2004.
doi:10.3189/172756404781814988

41. Fahnestock, M., R. Bindschadler, R. Kwok, and K. Jezek, "Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery," Science, Vol. 262, No. 5139, 1530-1534, 1993.
doi:10.1126/science.262.5139.1530

42. Bromwich, D. H., R. I. Cullather, and Q. Chen, "Evaluation of recent precipitation studies for the Greenland ice sheet," J. Geophys. Res., Vol. 108, No. D20, 26007-26024, 1998.
doi:10.1029/98JD02278