Vol. 59
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-04-29
Inhomogeneous and Homogeneous Losses and Magnetic Field Effect in Planar Undulator Radiation
By
Progress In Electromagnetics Research B, Vol. 59, 245-256, 2014
Abstract
We construct an analytical model for the description of emission of undulator radiation (UR) harmonics with account for several sources of line broadening, including the effect of a constant magnetic constituent. We compare it with that of the beam energy spread, emittance and focusing components. The analytical expressions obtained for the UR intensity and spectrum allow for profound analysis of homogeneous and inhomogeneous losses in their explicit form. We analyse the contributions to the fundamental frequency as well as to higher harmonics in long undulators. We study a possibility to compensate for the off-axis effects in undulators by a properly imposed constant magnetic field and obtain an expression for the intensity of such compensating effect. The results obtained are discussed in the context of their possible applications to free electron lasers (FEL). Recommendations for improvement of an UR harmonic line quality, profitable for FEL, are also proposed.
Citation
Konstantin V. Zhukovsky, "Inhomogeneous and Homogeneous Losses and Magnetic Field Effect in Planar Undulator Radiation," Progress In Electromagnetics Research B, Vol. 59, 245-256, 2014.
doi:10.2528/PIERB14020404
References

1. Ivanenko, D. D. and I. A. Pomeranchuk, "On the maximal energy, obtainable in a betatron," Phys. Rev., Vol. 65, 343, 1944.
doi:10.1103/PhysRev.65.343

2. Elder, F. R., A. M. Gurewitsch, R. V. Langmuir, and H. C. Pollock, "Radiation from electrons in a synchrotron," Phys. Rev., Vol. 71, 829, 1947.
doi:10.1103/PhysRev.71.829.5

3. Ivanenko, D. D. and A. A. Sokolov, "On the theory of the `luminous' electron," Doklady Akademii Nauk SSSR, Vol. 59, 1551, 1948.

4. Schwinger, J., "On the classical radiation of accelerated electrons," Phys. Rev., Vol. 75, 1912, 1949.
doi:10.1103/PhysRev.75.1912

5. Schott, G. A., Electromagnetic Radiation and the Mechanical Reactions Arising from It, Cambridge University Press, New York, 1912.

6. Milton, , K. A. and J. Schwinger, Electromagnetic Radiation: Variational Methods, Wave-guides and Accelerators, 360p, Springer, 2006.

7. Schwinger, J., W.-Y. Tsai, and T. Erber, "On the classical radiation of accelerated electrons," Annals of Physics, Vol. 96, 303, 1976.
doi:10.1016/0003-4916(76)90194-9

8. Sokolov, A. A. and I. M. Ternov, Synchrotron Radiation, Academie Verlag, Berlin, 1968.

9. Ginzburg, V. L., "On the radiation of microradiowaves and their absorbtion in the air," Isvestia Akademii Nauk SSSR, Vol. 11, No. 2, 165, Fizika, 1947.

10. Motz, H., W. Thon, and . N. J. Whitehurst, "Experiments on radiation by fast electron beams," Appl. Phys., Vol. 24, 826, 1953.
doi:10.1063/1.1721389

11. Artcimovich, A. L. and I. J. Pomeranchuk, "Radiation from fast electrons in a magnetic field," JETP, Vol. 16, 1, 1946.

12. Ternov, I. M., V. V. Mikhailin, and V. R. Khalilov, Synchrotron Radiation and Its Applications, Moscow, 1980.

13. Bordovitsyn, V. A., "Synchrotron Radiation Theory and Its Development: In the Memory of I. M. Ternov," Series on Synchrotron Radiation Technique and Applications, Vol. 5, World Scientific Publishing, Singapore, 1999.
doi:10.1142/9789812816993_0001

14. Sokolov, A. A., D. V. Gal'tsov, and V. C. Zhukovsky, "Radiation from electrons, moving along spiral orbits with relativistic longitudinal velocity," Zh. Tekhn. Fiz., Vol. 43, 682, 1973 (in Russian).

15. Koch, E. E., Handbook of Synchrotron Radiation, North Holland, Amsterdam, 1983.

16. Tripathi, S. and G. Mishra, "Three frequency undulator radiation and free electron laser gain," Rom. Journ. Phys., Vol. 56, No. 3-4, 411, 2011.

17. Alferov, D. F., U. A. Bashmakov, and P. A. Cherenkov, "Radiation from relativistic electrons in a magnetic undulator," Uspehi Fis. Nauk, Vol. 157, No. 3, 389, 1989.
doi:10.3367/UFNr.0157.198903b.0389

18. Iracane, D. and P. Bamas, "Two-frequency wiggler for better control of free-electronlaser dynamics," Phys. Rev. Lett., Vol. 67, 3086, 1991.
doi:10.1103/PhysRevLett.67.3086

19. Feldhaus, J. and B. Sonntag, Strong Field Laser Physics, Vol. 134, 91, Springer Series in Optical Sciences, 2009.
doi:10.1007/978-0-387-34755-4_5

20. Zholents, A. A., "Attosecond X-ray pulses from free-electron lasers," Laser Physics, Vol. 15, No. 6, 855, 2005.

21. Zhukovsky, K. V. and V. V. Mikhailin, "Two-frequency undulator and harmonic generation by an ultrarelativistic electron," Moscow University Physics Bulletin c/c of Vestnik-Moscovskii Universitet Fizika I Astronomiia, Vol. 60, No. 2, 50, 2005.

22. Dattoli, G., V. Mikhailin, P.-L. Ottaviani, and K. Zhukovsky, "Two-frequency undulator and harmonic generation by an ultrarelativistic electron," J. Appl. Phys., Vol. 100, 084507, 2006.
doi:10.1063/1.2357841

23. Zhukovsky, K., "Undulator radiation in multiple magnetic fields," Synchrotron: Design, Properties and Applications, 39, Nova Science Publishers, Inc., USA, 2012.

24. Reiss, H. R., "Effect of an intense electromagnetic field on a weakly bound system," Phys. Rev., Vol. A22, 1786, 1980.

25. Walker, R. P., "Interference effects in undulator and wiggler radiation sources," Nucl. Instrum. Methods, Vol. A335, No. 328, 1993.

26. Onuki, H. and P. Elleaume, Undulators, Wigglers and Their Applications, Taylor & Francis, New York, 2003.
doi:10.4324/9780203218235

27. Dattoli, G., V. V. Mikhailin, and K. Zhukovsky, "Undulator radiation in a periodic magnetic fieldwith a constant component," Journal of Applied Physics, Vol. 104, 124507, 2008.
doi:10.1063/1.3039094

28. Dattoli, G., V. V. Mikhailin, and K. V. Zhukovsky, "In°uence of a constant magnetic field on the radiation of a planar undulator," Moscow University Physics Bulletin, Vol. 64, No. 5, 507, 2009.
doi:10.3103/S0027134909050087

29. Landau, L. D. and E. M. Lifshits, The Classical Theory of Fields, 4th Ed., Pergamon, New York, 1975.

30. Jackson, J. D., Classical Electrodynamics, 2rd Ed., Wiley, New York, 1975.

31. Mikhailin, V. V., K. V. Zhukovskii, and A. I. Kudyukova, "On the radiation of a planar undulator with constant magnetic field on its axis taken into account," J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., Vol. 8, No. 3, 422, 2014.

32. Dattoli, G., Lectures on Free Electron Lasers, World Scientific, 1993.

33. Korchuganov, V. N., N. Yu. Sveshnikov, N. V. Smolyakov, and S. I. Tomin, "Special-purpose radiation sources based on the Siberia-2 storage ring," J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., Vol. 4, No. 6, 891, 2010.
doi:10.1134/S1027451010060030