Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-03-19

Electromagnetic Scattering by Approximately Cloaked Dielectric Cylinder

By Hany Mahmoud Zamel, Essam Eldiwany, and Hadia El-Hennawy
Progress In Electromagnetics Research B, Vol. 59, 59-70, 2014
doi:10.2528/PIERB14011806

Abstract

In cloaking, a body is hidden from detection by surrounding it by a coating consisting of an unusual anisotropic nonhomogeneous material. The permittivity and permeability of such a cloak are determined by the coordinate transformation of compressing a hidden 2D or cylindrical body into a line. Some components of the electrical parameters of the cloaking material (ε, μ) are required to have infinite or zero value at the boundary of the hidden object. In order to eliminate the zero or infinite values of the electrical parameters, approximate cloaking can be used by transforming the cylindrical body virtually into a small cylinder rather than a line, but this produces some scattering. The solution is obtained by rigorously solving Maxwell equations using angular harmonics expansion. In this work, the scattering pattern, and the backscattering cross section against the frequency for cloaked conducting and dielectric cylinders are studied for both transverse magnetic (TMz) and transverse electric (TEz) polarizations of the incident plane wave for different transformed body radii.

Citation


Hany Mahmoud Zamel, Essam Eldiwany, and Hadia El-Hennawy, "Electromagnetic Scattering by Approximately Cloaked Dielectric Cylinder," Progress In Electromagnetics Research B, Vol. 59, 59-70, 2014.
doi:10.2528/PIERB14011806
http://jpier.org/PIERB/pier.php?paper=14011806

References


    1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    2. Kwon, D. and D. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Ant. and Prop. Mag., Vol. 52, No. 1, 24-46, 2010.
    doi:10.1109/MAP.2010.5466396

    3. Yan, M., Z. Ruan, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Exp., Vol. 15, No. 26, 17772-17782, 2007.
    doi:10.1364/OE.15.017772

    4. Alitalo, P. and S. Tretyakov, "Numerical modeling and characterization of selected electromagnetic cloaking structures," Inter. J. of RF and Micro. Computer --- Aided Eng., Vol. 22, No. 4, 483-495, 2012.
    doi:10.1002/mmce.20638

    5. Cummer, S., B. Popa, D. Schurig, D. Smith, and . Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 36621-1-36621-5, 2006.

    6. Li, J., Y. Huang, and W. Yang, "Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks," J. of Comp. Phys., Vol. 231, No. 7, 2880-2891, 2012.
    doi:10.1016/j.jcp.2011.12.026

    7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Oct. 2006.

    8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewar, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
    doi:10.1109/22.798002

    9. Eleftheriades, G. V. and K. G. Balmain, Negative Refraction Metamaterials --- Fundamental Principles and Applications, John Wiley, 2005.
    doi:10.1002/0471744751

    10. Engheta, N. and R. W. Ziolkowski, "Metamaterials: Physics and Engineering Explorations," Wiley-IEEE Press, 2006.

    11. Wang, J., S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, X. Wu, and Z. Xu, "A tunable left-handed metamaterial based on modiˉed broadside-coupled split-ring resonators," Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.

    12. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, 113903-1-113903-4, 2007.
    doi:10.1103/PhysRevLett.99.113903

    13. Shahzad, A., F. Qasim, S. Ahmed, and Q. A. Naqvi, "Cylindrical invisibility cloak incorporating PEMC at perturbed void region," Progress In Electromagnetics Research M, Vol. 21, 61-76, 2011.
    doi:10.2528/PIERM11061302

    14. Liu, H., "Virtual reshaping and invisibility in obstacle scattering," Inverse Problems, Vol. 25, No. 4, 1-10, 2009.
    doi:10.1088/0266-5611/25/4/045006

    15. Zhou, T., "Electromagnetic inverse problems and cloaking,", Ph. D. Thesis, Washington University, 2010.

    16. Isic, G., R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, "Radiation and scattering from imperfect cylindrical electromagnetic cloaks," Opt. Exp., Vol. 16, 1413-1422, 2008.
    doi:10.1364/OE.16.001413

    17. Song, W., X. Yang, and X. Sheng, "Scattering characteristics of 2-D imperfect cloaks with layered isotropic materials," IEEE Ant. and Propag. Let.., Vol. 11, 53-56, 2012.
    doi:10.1109/LAWP.2011.2182590

    18. Kohn, R., D. Onofrei, M. Vogelius, and M. Weinstein, "Cloaking via change of variables for the Helmholtz equation," Comm. on Pure and App. Math., Vol. 63, No. 8, 973-1016, 2010.

    19. Tinghua, T., M. Huang, W. Li, J. Yang, and Q. Zhang, "A novel proposal for simplified design of metamaterial shrinking device," Int. Jour. for Light and Electron. Optics, Vol. 124, No. 21, 5232-5236, 2013.
    doi:10.1016/j.ijleo.2013.03.059

    20. Jiang, W., T. Cui, X. Yang, H. Ma, and Q. Cheng, "Shrinking an arbitrary object as one desires using metamaterials," App. Phys. Let., Vol. 98, 204101-1-204101-3, 2011.

    21. Li, J. Z. and H. Y. Liu, "A class of polarization-invariant directional cloaks by concatenation via transformation optics," Progress In Electromagnetics Research, Vol. 123, 175-187, 2012.
    doi:10.2528/PIER11111706

    22. Liu, H. Y. and T. Zhou, "On approximate electromagnetic cloaking by transformation media," SIAM J. Appl. Math., Vol. 71, 218-241, 2011.
    doi:10.1137/10081112X

    23. Bao, G., H. Y. Liu, and J. Zou, "Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers," J. Math. Pures et Appl., 1-18, 2013.

    24. Liu, H. Y., "On near-cloak in acoustic scattering," J. Differential Equations, Vol. 254, 1230-1246, 2013.
    doi:10.1016/j.jde.2012.10.015

    25. Liu, H. Y. and H. Sun, "Enhanced near-cloak by FSH lining," J. Math. Pures et Appl., Vol. 99, No. 1, 17-42, 2013.
    doi:10.1016/j.matpur.2012.06.001

    26. Li, J., H. Y. Liu, and H. Sun, "Enhanced approximate cloaking by SH and FSH lining," Inverse Problems, Vol. 28, No. 7, 075011-1-075011-21, 2012.
    doi:10.1088/0266-5611/28/7/075011

    27. McGuirk, J., "Electromagnetic field control and optimization using metamaterial,", Ph.D. Thesis, Air University, Ohio, USA, 2009.

    28. Hu, J, X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation," Opt. Exp., Vol. 17, No. 15, 13070, 2009.
    doi:10.1364/OE.17.013070

    29. Yan, M., W. Yan, and M. Qiu, "Invisibility cloaking by coordinate transformation," Progress in Optics, Vol. 52, 261-304, 2009.
    doi:10.1016/S0079-6638(08)00006-1

    30. Zamel, H., E. El-Diwany, and H. El-Hennawy, "Approximate electromagnetic cloaking of spherical bodies," National Radio Science Conference (NRSC), 19-28, Egypt, 2012.

    31. McGuirk, J. and P. Collins, "Controlling the transmitted field into a cylindrical cloak's hidden region," Optics Express, Vol. 16, No. 22, 17560-17573, 2008.
    doi:10.1364/OE.16.017560

    32. Zhang, B., "Study of transformation-based invisibility cloaks,", Ph.D. Thesis, Massachusetts, 2009.

    33. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill, 1961.

    34. Jin, J., "Theory and Computation of Electromagnetic Fields," John Wiley, 2010.

    35. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Kluwer Academic, 1970.
    doi:10.1007/978-1-4899-5324-7

    36. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
    doi:10.2528/PIER03012901

    37. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover, 1965.