Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Multilayered Superlenses Containing Csbr OR Active Medium for Subwavelength Photolithography

By Li-Hao Yeh and Jean-Fu Kiang
Progress In Electromagnetics Research B, Vol. 59, 1-18, 2014


The characteristics of periodic multilayered near-field superlenses are analyzed and optimized, using the dispersion relation derived from an effective medium theory and the transfer function in the spectral domain. The k'z-k''x and kz-kx contours are used to explain and predict the spectral width, amplitude and phase of the transfer function. Superlenses containing CsBr or active layers are proposed to reduce image distortion or to compensate for the propagation loss, respectively. The parameters of the superlenses can be optimized by simulations to resolve half-pitch features down to λ/36 using CsBr layers, and λ/20 using active layers.


Li-Hao Yeh and Jean-Fu Kiang, "Multilayered Superlenses Containing Csbr OR Active Medium for Subwavelength Photolithography," Progress In Electromagnetics Research B, Vol. 59, 1-18, 2014.


    1. Engheta, N. and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, IEEE Press, 2006.

    2. Pendry, J. B., "Negative refraction makes perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.

    3. Shi, Z., V. Kochergin, and F. Wang, "193nm superlens imaging structure for 20nm lithography node," Opt. Exp., Vol. 17, No. 14, 11309-11314, 2009.

    4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.

    5. Ramakrishna, S. A. and J. B. Pendry, "Imaging the near field," J. Mod. Opt., Vol. 50, No. 9, 1419-1430, 2003.

    6. Li, G., J. Li, H. L. Tam, C. T. Chan, and K. W. Cheah, "Sub-wavelength imaging from multilayer superlens," Int. Nanoelectron. Conf., 1309-1310, 2010.

    7. Melville, D. O. S. and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B, Vol. 394, No. 2, 197-202, 2007.

    8. Wood, B. and J. B. Pendry, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, 2006.

    9. Xu, T., Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, "Sub-diffraction-limited interference photolithography with metamaterials," Opt. Exp., Vol. 16, No. 18, 13579-13584, 2008.

    10. Wang, C., Y. Zhao, D. Gan, C. Du, and X. Luo, "Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films," Opt. Exp., Vol. 16, No. 6, 4217-4227, 2008.

    11. Scalora, M., G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks," Opt. Exp., Vol. 15, No. 2, 508-523, 2007.

    12. Moore, C. P., "Optical superlenses: Quality and fidelity in silver-dielectric near-field imaging systems,", University of Canterbury, May 24, 2011.

    13. Xie, Z., W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, "Plasmonic nanolithography: A review," Plasmonics, Vol. 6, 565-580, 2011.

    14. Liu, Z., S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett., Vol. 7, No. 2, 403-408, 2006.

    15. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Design, fabrication and characterization of a far-field superlens," Solid State Commun., Vol. 146, 202-207, 2008.

    16. Cao, P. F., X. P. Zhang, L. Cheng, and Q. Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.

    17. Smolyaninov, I. I., Y.-J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science, Vol. 315, No. 5819, 1699-1701, 2007.

    18. Cheng, B. H., Y. Z. Ho, Y.-C. Lan, and D. P. Tsai, "Optical hybrid-superlens hyperlens for superresolution imaging," IEEE J. Sel. Top. Quantum Electron., Vol. 19, No. 3, 2013.

    19. Kiang, J.-F., S. M. Ali, and J. A. Kong, "Integral equation solution to the guidance and leakage properties of coupled dielectric strip waveguides," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 2, 193-203, Feb. 1990.

    20. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1980.

    21. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.

    22. Mitra, S. K. and S. Chakraborty, Micro°uidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications, CRC Press, 2012.

    23. Rodney, W. S. and R. J. Spindler, "Refractive index of cesium bromide for ultraviolet, visible, and infrared wavelengths," J. Res. Bur. Stand., Vol. 51, No. 3, 123-126, 1953.

    24. Buzulutskovl, A., E. Shefer, A. Breskin, R. Chechik, and M. Prager, "The protection of K-Cs-Sb photocathodes with CsBr films," Nuclear Instru. Methods Phys. Res. A, Vol. 400, 173-176, 1997.

    25. Wasserman, H. J. and J. S. Vermaak, "On the determination of a lattice contraction in very small silver particles," Surface Science, Vol. 22, 164-172, 1970.

    26. Maldonado, J. R., P. Pianetta, D. H. Dowell, J. Smedley, and P. Kneisel, "Performance of a CsBr coated Nb photocathode at room temperature," J. Appl. Phys., Vol. 107, 013106, 2010.

    27. Fonoberov, V. A. and A. A. Balandin, "ZnO quantum dots: Physical properties and optoelectronic applications," J. Nanoelectron. Optoelectron., Vol. 1, 19-38, 2006.

    28. Peng, Y.-Y., T.-E. Hsieh, and C.-H. Hsu, "Dielectric confinement effect in ZnO quantum dots embedded in amorphous SiO2 matrix," J. Phys. D: Appl. Phys., Vol. 40, 6071-6075, 2007.

    29. Holmstrom, P., L. Thylen, and A. Bratkovsky, "Dielectric function of quantum dots in the strong confinement regime," J. Appl. Phys., Vol. 107, No. 6, 064307, 2010.

    30. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE, London, 1999.

    31. Vexler, M. I., S. E. Tyaginov, and A. F. Shulekin, "Determination of the hole effective mass in thin silicon dioxide film by means of an analysis of characteristics of a MOS tunnel emitter transistor," J. Phys.: Condens. Matter, Vol. 17, 8057-8068, 2005.

    32. You, J. B., X. W. Zhang, H. P. Song, J. Ying, Y. Guo, A. L. Yang, Z. G. Yin, N. F. Chen, and Q. S. Zhu, "Energy band alignment of SiO2/ZnO interface determined by X-ray photoelectron spectroscopy," J. Appl. Phys., Vol. 106, 043709, 2009.

    33. Ellmer, K., A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, Springer, 2008.

    34. Alim, K. A., V. A. Fonoberov, and A. A. Balandin, "Interpretation of the phonon frequency shifts in ZnO quantum dots," Matter. Res. Soc. Symp.,, Vol. 872, J13.21, 2005.

    35. Pellegrini, G., G. Mattei, and P. Mazzoldi, "Finite depth square well model: Applicability and limitations," J. Appl. Phys., Vol. 97, 073706, 2005.

    36. Stokes, E. D., F. B. Dunning, R. F. Stebbings, G. K. Walters, and . D. Rundel, "A high efficiency dye laser tunable from UV to the IR," Opt. Commun., Vol. 5, No. 4, 267-270, 1972.

    37. Duarte, F. J., "Tunable organic dye lasers: Physics and technology of high-performance liquid and solid-state narrow-linewidth oscillators," Prog. Quantum Electron., Vol. 36, 29-50, 2012.

    38. Kasarova, S. N., N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, "Analysis of the dispersion of optical plastic materials," Opt. Mater., Vol. 29, 1481-1490, 2007.

    39. Melpignano, P., C. Cioarec, R. Clergereaux, N. Gherardi, C. Villeneuve, and L. Datas, "E-beam deposited ultra-smooth silver thin film on glass with different nucleation layers: An optimization study for OLED micro-cavity application," Organic Electron., Vol. 11, 1111-1119, 2010.

    40. Tsai, T.-C. and D. Staack, "Low-temperature polymer deposition in ambient air using a floating-electrode dielectric barrier discharge jet," Plasma Process. Polym., Vol. 8, 523-534, 2011.