Vol. 55
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-10-15
Technique for Inhomogeneous Profiles in the Cross-Section of the Helical Rectangular Waveguide
By
Progress In Electromagnetics Research B, Vol. 55, 257-276, 2013
Abstract
This paper presents the technique to solve inhomogeneous profiles in the cross section of the helical rectangular waveguide. We present the technique to solve inhomogeneous dielectric profiles and the relation to the method of the propagation of electromagnetic fields along a helical waveguide with a rectangular cross section. The inhomogeneous examples will introduce for a dielectric slab, for a rectangular dielectric profile, and for a circular dielectric profile, in a rectangular metallic waveguide, in the cross section of the helical waveguide. This model is useful to improve the output results of the output power transmission in the cases of space helical waveguides, by increasing the step's angle or the radius of the cylinder. The application is useful for space helical waveguides in the microwave and the millimeter-wave regimes.
Citation
Zion Menachem, and Saad Tapuchi, "Technique for Inhomogeneous Profiles in the Cross-Section of the Helical Rectangular Waveguide," Progress In Electromagnetics Research B, Vol. 55, 257-276, 2013.
doi:10.2528/PIERB13091705
References

1. Riess, K., "Electromagnetic waves in a bent pipe of rectangular cross section," Q. Appl. Math., Vol. 1, 328-333, 1944.

2. Trang, N. T. and R. Mittra, "Field profile in a single-mode curved dielectric waveguide of rectangular cross section," IEEE Trans. on Microwave Theory and Tech., Vol. 29, 1315-1318, 1981.
doi:10.1109/TMTT.1981.1130558

3. Cochran, J. A. and R. G. Pecina, "Mode propagation in continuously curved waveguides," Radio Science, Vol. 1 (new series), No. 6, 679-696, 1966.

4. Carle, P. L., "New accurate and simple equivalent circuit for circular E-plane bends in rectangular waveguide," Electronics Letters, Vol. 23, No. 10, 531-532, 1987.
doi:10.1049/el:19870383

5. Weisshaar, A., S. M. Goodnick, and V. K. Tripathi, "A rigorous and efficient method of moments solution for curved waveguide bends," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 12, 2200-2206, 1992.
doi:10.1109/22.179881

6. Cornet, P., R. Duss'eaux, and J. Chandezon, "Wave propagation in curved waveguides of rectangular cross section," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 7, 965-972, 1999.
doi:10.1109/22.775427

7. Heiblum, M. and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron., Vol. 11, 75-83, 1975, Correction, ibid., Vol. 12, 313, 1975.
doi:10.1109/JQE.1975.1068563

8. Kawakami, S., M. Miyagi, and S. Nishida, "Bending losses of dielectric slab optical waveguide with double or multiple claddings," Appl. Optics, Vol. 14, 2588-2597, 1975. Correction, ibid., Vol. 15, 1681, 1976.
doi:10.1364/AO.14.002588

9. Chang, D. C. and E. F. Kuester, "Radiation and propagation of a surface-wave mode on a curved open waveguide of arbitrary cross section," Radio Science, 449-457, 1976.
doi:10.1029/RS011i005p00449

10. Marcatily, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., Vol. 43, 1783-1809, 1964.
doi:10.1002/j.1538-7305.1964.tb04108.x

11. Lewin, L., D. C. Chang, and E. F. Kuester, Electromagnetic Waves and Curved Structures, Chap. 8, 95-113, Peter Peregrinus Ltd., 1977.

12. Ghosh, S., P. K. Jain, and B. N. Basu, "Fast-wave analysis of an inhomogeneously-loaded helix enclosed in a cylindrical waveguide," Progress In Electromagnetics Research, Vol. 18, 19-43, 1998.
doi:10.2528/PIER97032900

13. Kumar, D. and O. N. Singh II, "Elliptical and circular step-index with conducting helical windings on the core-cladding boundaries for the different winding pitch angles - A comparative modal dispersion analysis," Progress In Electromagnetics Research, Vol. 52, 1-21, 2005.
doi:10.2528/PIER04052002

14. Kuester, E. F. and D. C. Chang, "Surface wave radiation loss from curved dielectric slabs and fibers," J. Quantum Electron., Vol. 11, 903-907, 1975.
doi:10.1109/JQE.1975.1068548

15. Mahmoud, S. F. and J. R. Wait, "Guided electromagnetic waves in a curved rectangular mine tunnel," Radio Science, Vol. 9, 567-572, 1974.
doi:10.1029/RS009i005p00567

16. Abbas, Z., R. D. Pollard, and R. W. Kelsall, "A rectangular dielectric waveguide technique for determination of permittivity of materials at W-band," IEEE Trans. on Microwave Theory and Tech., Vol. 46, No. 21, 2011-2015, 1998.
doi:10.1109/22.739275

17. Wolfson, B. J. and S. M. Wentworth, "Complex permittivity and permeability measurement using a rectangular waveguide," Microwave and Optical Technology Letters, Vol. 27, No. 3, 433-452, 2000.
doi:10.1002/1098-2760(20001105)27:3<180::AID-MOP9>3.0.CO;2-D

18. Yamamoto, T. and M. Koshiba, "Analysis of propagation characteristics of whispering gallery modes in a dielectric disk or a curved rectangular dielectric waveguide," Journal of Lightwave Technology, Vol. 11, 400-404, 1993.
doi:10.1109/50.219571

19. Menachem, Z., "Wave propagation in a curved waveguide with arbitrary dielectric transverse profiles - Abstract," Journal of Electromagnetic Waves and Aplications, Vol. 17, No. 10, 1423-1424, 2003.
doi:10.1163/156939303322519612

20. Menachem, Z., "Wave propagation in a curved waveguide with arbitrary dielectric transverse profiles," Progress In Electromagnetics Research, Vol. 42, 173-192, 2003.
doi:10.2528/PIER03012303

21. Menachem, Z. and S. Tapuchi, "Wave propagation in a helical waveguide with slab and rectangular dielectric profiles and applications," Progress In Electromagnetics Research B, Vol. 34, 77-102, 2011.

22. Salzer, H. E., "Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms," Math. Tables and Other Aids to Comut., Vol. 9, 164-177, 1955.
doi:10.2307/2002053

23. Salzer, H. E., "Additional formulas and tables for orthogonal polynomials originating from inversion integrals," J. Math. Phys., Vol. 39, 72-86, 1961.

24. Vladimirov, V., Equations of Mathematical Physics, 1971.