Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-10-22

Effects of Microelectrode Array Configuration and Position on the Threshold in Electrical Extracellular Stimulation of Single Nerve Fiber:a Modeling Study

By Xin-Tai Zhao, Zhi-Gong Wang, and Xiao-Ying Lv
Progress In Electromagnetics Research B, Vol. 55, 401-419, 2013
doi:10.2528/PIERB13082806

Abstract

A transient finite-element model has been presented to simulate extracellular potential stimulating in a neural tissue by a nonplanar microelectrode array (MEA). This model allows simulating the extracellular potential and transmembrane voltage by means of a single transient computation performed within single finite element (FE) software. The differential effects of the configuration and position of MEA in electrical extracellular stimulation are analyzed theoretically. 3-D models of single nerve fiber and different MEA are used for the computation of the stimulation induced field potential, whereas a cable model of a nerve fibre is used for the calculation of the transmembrane voltage of the nerve fiber. The position of MEA and the spacing of the microelectrodes are varied while mono-, bi-, tri-, and penta-polar MEAs are applied. The model predicts that the lowest stimulation voltage threshold is obtained in the stimulation with penta-polar MEA. Moreover, the relationships, which exist between the thresholds of the electrical extracellular stimulation and the parameters including position of the electrode array and the spacing of the microelectrodes in array, are studied and obtained.

Citation


Xin-Tai Zhao, Zhi-Gong Wang, and Xiao-Ying Lv, "Effects of Microelectrode Array Configuration and Position on the Threshold in Electrical Extracellular Stimulation of Single Nerve Fiber:a Modeling Study," Progress In Electromagnetics Research B, Vol. 55, 401-419, 2013.
doi:10.2528/PIERB13082806
http://jpier.org/PIERB/pier.php?paper=13082806

References


    1. Gaunt, R. A. and A. Prochazka, "Control of urinary bladder function with devices: Successes and failures," Progress in Brain Research, Vol. 152, 163-194, 2006.
    doi:10.1016/S0079-6123(05)52011-9

    2. Winfree, C. J., "Spinal cord stimulation for the relief of chronic pain," Curr. Surg., Vol. 62, No. 5, 476-481, 2005.
    doi:10.1016/j.cursur.2005.03.008

    3. Benabid, A. L., et al., "Long term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus," The Lancet, Vol. 337, 403-406, 1991.
    doi:10.1016/0140-6736(91)91175-T

    4. Theodore, W. H., "Brain stimulation for epilepsy," Nat. Clin. Pract. Neurol., Vol. 1, No. 2, 64-65, 2005.
    doi:10.1038/ncpneuro0051

    5. Thomas Jr., C. A., P. A. Springer, G. E. Loeb, Y. Berwald-Netter, and L. M. Okun, "A miniature microelectrode array to monitor the bioelectric activity of cultured cells," Experiment. Cell Res., Vol. 74, No. 1, 61-66, 1972.
    doi:10.1016/0014-4827(72)90481-8

    6. Wise, K. D., J. B. Angell, and A. Starr, "An integrated-circuit approach to extracellular microelectrodes," IEEE Trans. Biomed. Eng., Vol. 17, No. 3, 238-247, 1970.
    doi:10.1109/TBME.1970.4502738

    7. Buzsaki, G., "Large-scale recording of neuronal ensembles," Nature Neurosci., Vol. 7, No. 5, 446-451, 2004.
    doi:10.1038/nn1233

    8. Wang, Z. G., X. S. Gu, X. Y. Lu, Z. L. Jiang, W. Y. Li, G. M. Lu, Y. F. Wang, X. Y. Shen, X. T. Zhao, H. L. Wang, Z. Y. Zhang, and et al, "Microelectronics-embedded channel bridging and signal regeneration of injured spinal cords," Progress in Natural Science, Vol. 19, No. 10, 1261-1269, 2009.
    doi:10.1016/j.pnsc.2009.02.005

    9. Gross, G. W., A. N. Williams, and J. H. Lucas, "Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture," J. Neurosci. Methods, Vol. 5, No. 1--2, 13-22, 1982.
    doi:10.1016/0165-0270(82)90046-2

    10. Novak, J. L. and B. C. Wheeler, "Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array," J. Neurosci. Methods, Vol. 23, No. 2, 149-159, 1988.
    doi:10.1016/0165-0270(88)90187-2

    11. Charvet, G., et al., "A 256-channel microelectrode array (MEA) system with integrated electronics for recording and stimulation of neural networks," Society for Neuroscience 37th Annual Meeting, San Diego, California, 171-174, 2007.

    12. Billoint, O., J. P. Rostaing, G. Charvet, and B. Yvert, "A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays," Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1, 6070-6073, 2007.

    13. Branner, A., R. B. Stein, and R. A. Normann, "Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes," J. Neurophysiol, Vol. 85, 1585-1594, 2001.

    14. McCreery, D., A. Lossinsky, V. Pikov, and X. D. Liu, "Microelectrode array for chronic deep-brain microstimulation and recording," IEEE Trans. Biomed. Eng., Vol. 53, No. 4, 726-737, 2006.
    doi:10.1109/TBME.2006.870215

    15. Smit, J. P. A., W. L. C. Rutten, and H. B. K. Boom, "Endoneural selective stimulating using wire-microelectrode arrays," IEEE Trans. Biomed. Eng., Vol. 7, No. 4, 399-412, 1999.

    16. Campbell, P. K., K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, "A silicon-based, three-dimensional neural interface: Manufacturing processes for an intracortical electrode array," IEEE Trans. Biomed. Eng., Vol. 38, No. 8, 758-768, 1991.
    doi:10.1109/10.83588

    17. Song, Y. K., W. R. Patterson, C. W. Bull, J. Beals, N. Hwang, A. P. Deangelis, C. Lay, J. L. McKay, A. V. Nurmikko, M. R. Fellows, and et al, "Development of a chipscale integrated microelectrode/microelectronic de-vice for brain implantable neuroengineering applications," IEEE Tans. Neural. System and Rehabilitation Eng., Vol. 13, No. 2, 220-226, 2005.
    doi:10.1109/TNSRE.2005.848337

    18. Hoogerwerf, A. C. and K. D. Wise, "A three-dimensional microelectrode array for chronic neural recording," IEEE Trans. Biomed. Eng., Vol. 41, No. 12, 1136-1146, 1994.
    doi:10.1109/10.335862

    19. Aziz, J. N. Y., R. Genov, B. L. Bardakjian, M. Derchansky, and P. L. Carlen, "Brain-silicon interface for high-resolution in vitro neural recording," IEEE Tans. Biomedical Circuits and Systems, Vol. 1, No. 1, 56-62, 2007.
    doi:10.1109/TBCAS.2007.893181

    20. Wang, R. X., X. J. Huang, G. F. Liu, W. Wang, F. T. Dong, and Z. H. Li, "Fabrication and characterization of a parylene-based three-dimensional microelectrode array for use in retinal prosthesis," Journal of Microelectromechanical Systems, Vol. 19, No. 2, 367-374, 2010.
    doi:10.1109/JMEMS.2009.2039773

    21. Huber, D., et al., "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice," Nature, Vol. 451, No. 7174, 61-64, 2008.
    doi:10.1038/nature06445

    22. Houweling, A. R. and M. Brecht, "Behavioural report of single neuron stimulation in somatosensory cortex," Nature, Vol. 451, 65-68, 2008.
    doi:10.1038/nature06447

    23. Grumet, A. E., J. L. Wyatt, Jr, and J. F. Rizzo, "Multi-electrode stimulation and recording in the isolated retina," J. Neurosci. Methods, Vol. 101, No. 1, 31-42, 2000.
    doi:10.1016/S0165-0270(00)00246-6

    24. Rattay, F. and S. Resatz, "Dipole distance for minimum threshold current to stimulate unmyelinated axons with microelectrodes," IEEE Trans. Biomed. Eng., Vol. 54, No. 1, 158-162, 2007.
    doi:10.1109/TBME.2006.883730

    25. Holsheimer, J. and W. A. Wesselink, "Optimum electrode geometry for spinal cord stimulation: The narrow bipole and tripole," Med. Biol. Eng. Comput., Vol. 35, No. 5, 493-497, 1997.
    doi:10.1007/BF02525529

    26. Rattay, F. and S. Resatz, "Effective electrode configuration for selective stimulation with inner eye prostheses," IEEE Trans. Biomed. Eng., Vol. 51, No. 9, 1659-1664, 2004.
    doi:10.1109/TBME.2004.828044

    27. Meier, J. H., W. L. Rutten, A. E. Zoutman, H. B. Boom, and P. Bergveld, "Simulation of multipolar fiber selective neural stimulation using intrafascicular electrodes," IEEE Trans. Biomed. Eng., Vol. 39, No. 2, 122-134, 1992.
    doi:10.1109/10.121643

    28. Schnabel, V. and J. J. Struijk, "Evaluation of the cable model for electrical stimulation of unmyelinated nerve fibers," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1027-1033, 2001.
    doi:10.1109/10.942593

    29. Fromherz, P., "Sheet conductor model of brain slices for stimulation and recording with planar electronic contacts," Eur. Biophys. J., Vol. 31, No. 3, 228-231, 2002.
    doi:10.1007/s00249-002-0213-7

    30. Church, P., A. Leduc, R. A. Beique, and J. R. Derome, "A numerical solution of cylindrical coordinate Laplace's equation with mixed boundary conditions along the axis of symmetry: Application to intracerebral stimulating electrodes," J. Appl. Phys., Vol. 56, No. 1, 1-5, 1984.
    doi:10.1063/1.333752

    31. Altman, K. W. and R. Plonsey, "Development of a model for point source electrical fibre bundle stimulation," Med. Biol. Eng. Comput, Vol. 26, No. 5, 466-475, 1988.
    doi:10.1007/BF02441913

    32. Buitenweg, J. R., W. L. Rutten, and E. Marani, "Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact," IEEE Trans. Biomed. Eng., Vol. 49, No. 12, 1591-1599, 2002.
    doi:10.1109/TBME.2002.804504

    33. McIntyre, C. C., W. M. Grill, D. L. Sherman, and N. V. Thakor, "Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition," J. Neurophysiol., Vol. 91, No. 4, 1457-1469, 2004.
    doi:10.1152/jn.00989.2003

    34. Struijk, J. J., J. Holsheimer, and H. B. Boom, "Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study," IEEE Trans. Biomed. Eng., Vol. 40, No. 7, 632-639, 1993.
    doi:10.1109/10.237693

    35. Laudani, A., S. Coco, and F. R. Fulginei, "Finite element model of charge transport across ionic channels," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 32, No. 6, 1845-1854, 2013.
    doi:10.1108/COMPEL-10-2012-0282

    36. Buitenweg, J. R., W. L. C. Rutten, and E. Marani, "Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode," IEEE Trans. Biomed. Eng., Vol. 50, No. 4, 501-509, 2003.
    doi:10.1109/TBME.2003.809486

    37. Buitenweg, J. R., W. L. C. Rutten, and E. Marani, "Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes," IEEE Trans. Biomed. Eng., Vol. 49, No. 11, 1580-1590, 2002.
    doi:10.1109/TBME.2002.805555

    38. Heuschkel, M. O., M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, "A three-dimensional multi-electrode array for multisite stimulation and recording in acute brain slices," J. Neurosci. Methods, Vol. 114, 135-148, 2002.
    doi:10.1016/S0165-0270(01)00514-3

    39. Joucla, S. and B. Yvert, "Improved focalization of electrical microstimulation using microelectrode arrays: A modeling study," PLOS ONE, Vol. 4, No. 3, e4828, 2009.
    doi:10.1371/journal.pone.0004828

    40. Joucla, S., P. Branchereau, D. Cattaert, and B. Yvert, "Extracellular neural microstimulation may activate much larger regions than expected by simulations: A combined experimental and modeling study," PLOS ONE, Vol. 7, No. 8, 41324, 2012.
    doi:10.1371/journal.pone.0041324

    41. Moulin, C., A. Gliµere, D. Barbier, S. Joucla, B. Yvert, P. Mailley, and R. Guillemaud, "A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential," IEEE Trans. Biomed. Eng., Vol. 55, No. 2, 683-692, 2008.
    doi:10.1109/TBME.2007.903522

    42. Hodgkin, A. L. and A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiol., Vol. 117, 500-544, 1952.

    43. Mainen, Z. F., J. Joerges, J. R. Huguenard, and T. J. Sejnowski, "A model of spike initiation in neocortical pyramidal neurons," Neuron, Vol. 15, 1427-1439, 1995.
    doi:10.1016/0896-6273(95)90020-9

    44. Lindsay, K. A., J. R. Rosenberg, and G. Tucker, "From Maxwell's equations to the cable equation and beyond," Progr. Biophys. Molecul. Biol., Vol. 85, No. 1, 71-116, 2004.
    doi:10.1016/j.pbiomolbio.2003.08.001

    45. Mofftt, M. A. and C. C. McIntyre, "Model-based analysis of cortical recording with silicon microelectrodes," Clin. Neurophysiol., Vol. 116, No. 9, 2240-2250, 2005.
    doi:10.1016/j.clinph.2005.05.018

    46. Holt, G. R. and C. Koch, "Electrical interactions via the extracellular potential near cell bodies," J. Comput. Neurosci., Vol. 6, No. 2, 169-184, 1999.
    doi:10.1023/A:1008832702585

    47. Claverol-Tinture, E. and J. Pine, "Extracellular potentials in low-density dissociated neuronal cultures," J. Neurosci. Methods, Vol. 117, 13-21, 2002.
    doi:10.1016/S0165-0270(02)00043-2

    48. Brown, P. N., A. C. Hindmarsh, and L. R. Petzold, "Using Krylov methods in the solution of large-scale differential-algebraic systems," SIAM J. Scientif. Comput., Vol. 15, No. 6, 1467-1488, 1994.
    doi:10.1137/0915088

    49. McHardy, J., D. Geller, and S. B. Brummer, "An approach to corrosion control during electrical stimulation," Ann. Biomed. Eng., Vol. 5, No. 2, 144-149, 1977.
    doi:10.1007/BF02364014

    50. McCreery, D. B., W. F. Agnew, T. G. Yuen, and L. Bullara, "Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation," IEEE Trans. Biomed. Eng., Vol. 37, No. 10, 996-1001, 1990.
    doi:10.1109/10.102812

    51. Pudenz, R. H., L. A. Bullara, S. Jacques, and F. T. Hambrecht, "Electrical stimulation of the brain. III. The neural damage model," Surg. Neurol., Vol. 4, No. 4, 389-400, 1975.