Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-10-04

32-Channel Optical Interleaver/Deinterleaver Using Fibonacci Quasi-Periodic Structures

By Saeed Golmohammadi
Progress In Electromagnetics Research B, Vol. 55, 217-240, 2013
doi:10.2528/PIERB13071701

Abstract

The design of Interleaver/Deinterleavers using Fibonacci-class quasistructures is proposed. We introduce an optical passive configuration composed of Fibonacci quasistructures and circulators which acts as interleaver and deinterleaver. Odd and even channels are interleaved/deinterleaved with dense wavelength-division multiplexing (DWDM) multichannel filter based on Fibonacci quasi-periodic structures. We use Fibonacci based DWDM filters in order to separate the odd and even wavelength channels. These quasi-periodic structures, with different geometrical and physical parameters, act as DWDM filters that reflect even and odd wavelengths. A modified numerical approach is presented to design the Fibonacci based DWDM filter. We demonstrate that it is possible to optimize DWDM filter response by varying the parameters of the Fibonacci structure, such as generation number, Fibonacci order and optical lengths of the layers. The proposed filter structures can separate 32 DWDM channels with 0.8 nm spacing into two 16 DWDM channels with 1.6 nm spacing. In order to eliminate the crosstalk between the adjacent channels, we apply the refractive index profile apodization. These structures are useful for multiplexing/demultiplexing of a high numbers of the channels.

Citation


Saeed Golmohammadi, "32-Channel Optical Interleaver/Deinterleaver Using Fibonacci Quasi-Periodic Structures," Progress In Electromagnetics Research B, Vol. 55, 217-240, 2013.
doi:10.2528/PIERB13071701
http://jpier.org/PIERB/pier.php?paper=13071701

References


    1. Shine, B. and J. Bautista, "Interleavers make high-channel-count system economical," J. Lightwave Technol., Vol. 8, 140-144, 2000.

    2. Dingel, B. B. and T. Aruga, "Properties of a novel noncascaded type, easy-to-design, ripple-free optical bandpass filter," J. Lightwave Technol., Vol. 17, 1461-1469, 1999.
    doi:10.1109/50.779169

    3. Yu, K., D. Lee, and O. Solgaard, "Tunable wave length multiplexer/demultiplexer using a MEMS Gires-Tournois interferometers,", 521-522, 2003.

    4. Hsieh, C. H., R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett., Vol. 15, 242-244, 2003.
    doi:10.1109/LPT.2002.806885

    5. Yu, K. and O. Solgaard, "MEMS optical wavelength deinter-leaver with continuously variable channel spacing and center wave-length," IEEE Photon. Technol. Lett., Vol. 15, 425-427, 2003.
    doi:10.1109/LPT.2002.807900

    6. Zhang, J., L. Liu, Y. Zhou, and C. Zhou, "Dynamic characteristics of a novel flat-top interleaver filter," Optics, Vol. 114, 39-43, 2003.

    7. Zhang, J., L. Liu, and Y. Zhou, "Novel and simple approach for designing lattice form interleaver filter," Optics Express, Vol. 11, 2221-2224, 2003.

    8. Li, W.-Z., Q.-D. Guo, and S. Gu, "Interleaver technology review," Proc. SPIE,, Vol. 4906, 73-80, 2002.
    doi:10.1117/12.480552

    9. Cao, S., J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, "Interleaver technology: Comparisons and applications requirements," J. Lightwave Technol., Vol. 22, 281-289, 2004.
    doi:10.1109/JLT.2003.822832

    10. Yu, K. and O. Solgaard, "Tunable optical interleaver based on Gires-Tournois interferometers with electrostatically actuated micromirror arrays," Annual Report SPRC, 2000-2001.

    11. Dingel, B. B. and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system application," Optics Lett., Vol. 23, 1099-1101, 1998.
    doi:10.1364/OL.23.001099

    12. Chon, J., A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, "Integrated interleaver technology enables high performance in DWDM systems," Proc. Nat. Fiber Optic Eng. Conf., 1410-1420, Baltimore, MD, 2001.

    13. Sargent, R. B. and N. A. O'Brien, "Review of thin films in telecommunications applications," Proc. Optical Interference Coating (OSA), WA2-1-3, Canada, 2001.

    14. Chen, L. R., H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, "Fabrication of transmission filters with single or multiple °attened passbands based on chirped Moire gratings," Electron. Lett.,, Vol. 35, 584-585, Apr. 1999.
    doi:10.1049/el:19990406

    15. Giles, C. R., "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol., Vol. 15, 1391-1404, 1997.
    doi:10.1109/50.618357

    16. Slavik, R. and S. LaRochelle, "Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings," Electron. Lett., Vol. 14, 1704-1706, 2002.

    17. Kohmoto, M., B. Sutherland, and K. Iguchi, "Localization in optics: Quasi-periodic media," Phy. Rev. Lett., Vol. 58, 2436-2438, 1987.
    doi:10.1103/PhysRevLett.58.2436

    18. Sibilia, C., P. Masciulli, and M. Bertolotti, "Optical properties of quasi-periodic (self-similar) structures," Pure Appl. Opt., Vol. 7, 383-391, 1998.
    doi:10.1088/0963-9659/7/2/028

    19. Gellermann, W., M. Kohmoto, B. Sutherland, and P. C. Taylor, "Localization of light waves in fibonacci dielectric multilayers," Phy. Rev. Lett., Vol. 72, 633-636, 1994.
    doi:10.1103/PhysRevLett.72.633

    20. Lusk, D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Optics Communications, Vol. 198, 273, 2001.
    doi:10.1016/S0030-4018(01)01531-0

    21. Peng, R. W., M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, "Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers," Applied Physics Letters, Vol. 80, 3063, 2002.
    doi:10.1063/1.1468895

    22. Macia, E., "Optical engineering with Fibonacci dielectric multilayers," Applied Physics Letters, Vol. 73, 3330, 1998.
    doi:10.1063/1.122759

    23. Macia, E., "Exploiting quasi-periodic order in the design of optical devices," Phy. Rev. B, Vol. 63, 205421, 2001.
    doi:10.1103/PhysRevB.63.205421

    24. Macia, E., "Optical applications of fibonacci dielectric multilayers," Ferroelectrics, Vol. 250, 401, 2001.
    doi:10.1080/00150190108225111

    25. Yang, X., Y. Liu, and X. Fu, "Transmission properties of light through the Fibonacci-class multilayers," J. Phy. Rev. B, Vol. 89, 4546, 1999.

    26. Huang, X. Q., S. S. Jiang, R. W. Peng, and A. Hu, "Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers," J. Phy. Rev., Vol. 59, 245104-2, 2001.

    27. Yariv, A., "Coupled-mode theory for guided-wave optics," J. Quantum Eelec., Vol. 9, 919-933, 1973.
    doi:10.1109/JQE.1973.1077767

    28. Mizrahi, V., P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, "Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides," Applied Physics Letters, Vol. 63, 1727-1729, 1993.
    doi:10.1063/1.110696

    29. De Sterke, C. M. and D. G. Salina, "Coupled-mode theory for light propagation through deep nonlinear gratings," Phy. Rev. E, Vol. 54, 1964, 1996.
    doi:10.1103/PhysRevE.54.1969

    30. Ennser, K., M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fibe gratings for optical communications," J. Quantum Eelec., Vol. 34, 770-778, 1998.
    doi:10.1109/3.668763

    31. Golmohammadi, S., M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, "Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures," Optics Express, Vol. 15, No. 17, 10520-10532, Aug. 20, 2007.
    doi:10.1364/OE.15.010520