Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-10-18

Localization of 3D Near-Field Source Using the Aperture Extension Method and Nonuniform Cross Array

By Jia-Jia Jiang, Fa-Jie Duan, Yao-Chao Li, and Xiang-Ning Hua
Progress In Electromagnetics Research B, Vol. 55, 297-324, 2013
doi:10.2528/PIERB13071306

Abstract

Depending on the aperture extension (AE), a high performance three-dimensional (3D) near-field (NF) source localization algorithm is proposed with the nonuniform linear array (NLA). The proposed algorithm first generates some fictitious sensors to extend the array aperture by constructing a new Toeplitz matrix, and then obtains a two-dimensional (2D) covariance matrix which only contains the elevation angle and range parameters, and another 3D covariance matrix which contains the elevation/azimuth angle and range parameters. Then based on the 2D covariance matrix, both the elevation angle and range parameters are estimated by using the NLA along the Z axis. With the estimates of both the elevation angle and range parameters and combining the 3D covariance matrix, the estimates of the azimuth angle parameters are obtained using the NLA along the Y axis. The proposed algorithm has four main merits: i) unlike some classical NF source localization algorithms, the quarter-wavelength sensor spacing constraint is not required and more sources can be located simultaneously by the proposed algorithm; ii) the 3D parameters of the proposed algorithm are paired automatically; iii) the 3D search required in conventional 3D multiple signal classification (MUSIC) algorithm is replaced with only one-dimensional (1D) search, and thus the computational burden is reduced; iv) the proposed algorithm gains superior parameter estimation accuracy and resolution.

Citation


Jia-Jia Jiang, Fa-Jie Duan, Yao-Chao Li, and Xiang-Ning Hua, "Localization of 3D Near-Field Source Using the Aperture Extension Method and Nonuniform Cross Array," Progress In Electromagnetics Research B, Vol. 55, 297-324, 2013.
doi:10.2528/PIERB13071306
http://jpier.org/PIERB/pier.php?paper=13071306

References


    1. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Process. Mag., Vol. 13, No. 4, 67-94, 1996.
    doi:10.1109/79.526899

    2. Schmidt, R. O., "Multiple emitter location and signal parameters estimation," IEEE Trans. on Antennas and Propagat., Vol. 34, No. 3, 267-280, 1986.

    3. Roy, R. and T. Kailath, "ESPRIT --- Estimation of signal parameters via rotational invariance technique," IEEE Trans. on Acoust., Speech, Signal Processing, Vol. 37, No. 7, 984-995, 1989.
    doi:10.1109/29.32276

    4. Lizzi, L., F. Viani, M. Benedetti, P. Rocca, and A. Massa, "The M-DSO-ESPRIT method for maximum likelihood DOA estimation," Progress In Electromagnetics Research, Vol. 80, 477-497, 2008.
    doi:10.2528/PIER07121106

    5. Changuel, H., F. Harabi, and A. Gharsallah, "2-L-shape two-dimensional arrival angle estimation with a classical subspace algorithm," Progress In Electromagnetics Research, Vol. 66, 301-315, 2006.
    doi:10.2528/PIER06112802

    6. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
    doi:10.2528/PIER10011904

    7. Piya, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, 2010.
    doi:10.1109/TSP.2010.2049264

    8. Cheng, S.-C. and K.-C. Lee, "Reducing the array size for DOA estimation by an antenna mode switch technique," Progress In Electromagnetics Research, Vol. 131, 117-134, 2012.

    9. Liang, J. L. and D. Liu, "Joint elevation and azimuth direction finding using L-shaped array," IEEE Trans. on Antennas and Propagat., Vol. 58, No. 6, 2136-2141, 2010.
    doi:10.1109/TAP.2010.2046838

    10. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

    11. Li, Y. and H. Ling, "Improved current decomposition in helical antennas using the ESPRIT algorithm," Progress In Electromagnetics Research, Vol. 106, 279-293, 2010.
    doi:10.2528/PIER10052811

    12. Swindlehurst, A. L. and T. Kailath, "Near-field source parameter estimation using a spatial Wigner distribution approach," Proc. SPIE Conf. 975, 86-92, 1988.
    doi:10.1117/12.948494

    13. Huang, Y. D. and M. Barkat, "Near-field multiple sources localization by passive sensor array," IEEE Trans. on Antennas and Modeling Propag., Vol. 39, No. 7, 968-975, 1991.
    doi:10.1109/8.86917

    14. Yuen, N. and B. Friedlander, "Performance analysis of higher order ESPRIT for localization of near-field sources," IEEE Transactions on Signal Processing, Vol. 46, No. 3, 709-719, 1998.
    doi:10.1109/78.661337

    15. Challa, R. N. and S. Shamsunder, "High-order subspace based algorithms for passive localization of near-field sources," Proc. 29th Asilomar Conf. Signals, Syst., Vol. 2, 777-781, 1995.

    16. He, J., M. N. S. Swamy, and M. O. Ahmad, "Effcient application of MUSIC algorithm under the coexistence of far-field and near- field sources," IEEE Transactions on Signal Processing, Vol. 60, No. 4, 2066-2070, 2012.
    doi:10.1109/TSP.2011.2180902

    17. Grosicki, E., K. Abed-Meraim, and Y. Hua, "A weighted linear prediction method for near-field source localization," IEEE Transactions on Signal Processing, Vol. 53, No. 10, 3651-3660, 2005.
    doi:10.1109/TSP.2005.855100

    18. Challa, R. N. and S. Shamsunder, "3-D spherical localization of multiple non-Gaussian sources using cumulants," 8th Sag. Proc. Workshop on SSAP, 101-104, 1996.
    doi:10.1109/SSAP.1996.534830

    19. Challa, R. N. and S. Shamsunder, "Passive near-field localization of multiple non-Gaussian sources in 3-D using cumulants," Signal Process., Vol. 65, 39-53, 1998.
    doi:10.1016/S0165-1684(97)00206-5

    20. Abed-Meraim, K. and Y. Hua, "3-D near field source localization using second order statistics," Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, Vol. 2, 1307-1311, 1997.

    21. Hung, H.-S., S.-H. Chang, and C.-H. Wu, "3-D MUSIC with polynomial rooting for near-field source localization," Conference Proceedings, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-96, Vol. 6, 3065-3069, 1996.
    doi:10.1109/ICASSP.1996.550523

    22. Hung, H.-S., S.-H. Chang, and C.-H. Wu, "Near-field source localization using MUSIC with polynomial rooting," Journal of Marine Science and Technology, Vol. 6, No. 1, 1-7, 1998.

    23. Lee, C. M., K. S. Yoon, J. H. Lee, and K. K. Lee, "Effcient algorithm for localizing 3-D narrowband multiple sources," IEEE Proc., Radar Sonar Navig., Vol. 148, No. 1, 23-26, 2001.
    doi:10.1049/ip-rsn:20010074

    24. Lee, J. H., D. H. Park, G. T. Park, and K. K. Lee, "Algebraic path-following algorithm for localizing 3-D near-field sources in uniform circular array," Electronics Letters, Vol. 39, No. 7, 1283-1285, 2003.
    doi:10.1049/el:20030819

    25. Kabaoglu, N., H. A. Crpan, E. Cekli, and S. Paker, "Maximum likelihood 3-D near-field source localization using the EM algorithm," Proceedings of the Eighth IEEE International Symposium on Computers and Communication, Vol. 1, 492-497, 2003.

    26. Dogan, M. C. and J. M. Mendel, "Applications of cumulants to array processing --- Part I: aperture extension and array calibration," IEEE Transactions on Signal Processing, Vol. 43, 1200-1216, 1995.
    doi:10.1109/78.382404

    27. McCloud, M. L. and L. L. Scharf, "A new subspace identification algorithm for high-resolution DOA estimation," IEEE Trans. on Antennas and Propagat., Vol. 50, 1382-1390, 1995.

    28. Yang, K., Z. Q. Zhao, and Q. H. Liu, "Robust adaptive beamforming against array calibration errors," Progress In Electromagnetics Research, Vol. 140, 341-351, 2013.

    29. Amar, J. G., "The Monte Carlo method in science and engineering," Computing in Science & Engineering, Vol. 8, No. 2, 9-19, 2006.
    doi:10.1109/MCSE.2006.34

    30. Metropolis, N. C., et al., "Equation of state calculations by fast computing machines," J. Chemical Physics, Vol. 21, 1087-1092, 1953.
    doi:10.1063/1.1699114