Vol. 51

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-15

A Pareto Elite Selection Genetic Algorithm for Random Antenna Array Beamforming with Low Sidelobe Level

By Suhanya Jayaprakasam, Sharul Kamal Bin Abd Rahim, and Chee Yen Leow
Progress In Electromagnetics Research B, Vol. 51, 407-425, 2013
doi:10.2528/PIERB13032008

Abstract

Random antenna array (RAA) that uses the conventional beamforming method produces a poor beam pattern with high sidelobe level. This greatly reduces the performance and the efficiency of the antenna. The use of Genetic Algorithm (GA) to find the best positions for the antenna elements in RAA to lower the sidelobes has been widely researched. However, there has been no solution proposed for the reduction of sidelobes when the user has no autonomy over the position of the radiating elements, for instance in cases such as emergency communications. This paper proposes a novel Pareto Elite Selection Genetic Algorithm (PESGA) optimization method to reduce the sidelobes in an RAA that has fixed elements' position. The proposed method uses a single fitness function (peak sidelobe level) for parent selection while an additional function (number of sidelobes above a threshold level) is introduced to select the elitist in every generation via Pareto Front (PF) selection. Results indicate that the proposed PESGA method is best used for scenarios where the array size is small. In such cases, the proposed method provides much reduced sidelobe compared to the conventional RAA beamforming method and up to 200% improvements in terms of mainlobe to peak sidelobe ratio compared to GA weight optimized beamforming method.

Citation


Suhanya Jayaprakasam, Sharul Kamal Bin Abd Rahim, and Chee Yen Leow, "A Pareto Elite Selection Genetic Algorithm for Random Antenna Array Beamforming with Low Sidelobe Level," Progress In Electromagnetics Research B, Vol. 51, 407-425, 2013.
doi:10.2528/PIERB13032008
http://jpier.org/PIERB/pier.php?paper=13032008

References


    1. John, L. and K. L. Titus, Digital Beamforming in Wireless Communications, Artech House, Inc., 1996.

    2. Dahrouj, H. and Y. Wei, "Coordinated beamforming for the multicell multi-antenna wireless system," IEEE Transactions on Wireless Communications, Vol. 9, 1748-1759, 2010.
    doi:10.1109/TWC.2010.05.090936

    3. Muhammad, N., et al., "Beam forming networks using reduced size butler matrix," Wireless Personal Communications, 1-20, 2010.

    4. Li, Q., et al., "MIMO techniques in WiMAX and LTE: A feature overview," IEEE Communications Magazine, Vol. 48, 86-92, 2010.
    doi:10.1109/MCOM.2010.5458368

    5. Shilo, S., A. J. Weiss, and A. Averbuch, "Performance of optimal beamforming with partial channel knowledge," IEEE Transactions on Wireless Communications, Vol. 10, 4035-4040, 2011.
    doi:10.1109/TWC.2011.101211.110124

    6. Huang, Y., "WiMAX dynamnic beamforming antenna," IEEE Aerospace and Electronic Systems Magazine, Vol. 23, 26-31, 2008.
    doi:10.1109/MAES.2008.4607896

    7. Constantine, A. B., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

    8. Huang, J. Y., P. Wang, and Q. Wan, "Collaborative beamforming for wireless sensor networks with arbitrary distributed sensors," IEEE Communications Letters, Vol. 16, 1118-1120, 2012.
    doi:10.1109/LCOMM.2012.050912.120370

    9. D'Urso, M., M. G. Labate, A. Buonanno, and P. Vinetti, "Effective beam forming networks for large arbitrary array of antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, 5129-5135, 2012.
    doi:10.1109/TAP.2012.2208091

    10. Gerstoft, P. and W. S. Hodgkiss, "Improving beampatterns of two-dimensional random arrays using convex optimization," Journal of the Acoustical Society of America, Vol. 129, EL135-EL140, 2011.
    doi:10.1121/1.3556896

    11. Young, W. F., E. F. Kuester, and C. L. Holloway, "Measurements of randomly placed wireless transmitters used as an array for receivers located within the array volume with application to emergency responders," IEEE Transactions on Antennas and Propagation, Vol. 57, 241-247, 2009.
    doi:10.1109/TAP.2008.2009651

    12. Fuchs, B. and J. J. Fuchs, "Optimal narrow beam low sidelobe synthesis for arbitrary arrays," IEEE Transactions on Antennas and Propagation, Vol. 58, 2130-2135, 2010.
    doi:10.1109/TAP.2010.2046863

    13. Krishnamurthy, S., D. W. Bliss, and V. Tarokh, Sidelobe level distribution computation for antenna arrays with arbitrary element distributions, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2045-2050, 2011.

    14. Li, W. T., X. W. Shi, L. Xu, and Y. Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
    doi:10.2528/PIER07121503

    15. Li, R., L. Xu, X. W. Shi, N. Zhang, and Z. Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

    16. Lu, B., S. X. Gong, S. A. Zhang, Y. Guan, and J. Ling, "Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 114-117, 2010.
    doi:10.1109/LAWP.2010.2087003

    17. Steinberg, B., "The peak sidelobe of the phased array having randomly located elements," IEEE Transactions on Antennas and Propagation, Vol. 20, 129-136, 1972.
    doi:10.1109/TAP.1972.1140162

    18. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
    doi:10.2528/PIER12022806

    19. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, "Improved antenna array adaptive beamforming with low side lobe level using a novel adaptive invasive weed optimization method ," Progress In Electromagnetics Research, Vol. 124, 137-150, 2012.
    doi:10.2528/PIER11120202

    20. Son, S. H. and U. H. Park, "Sidelobe reduction of low-profile array antenna using a genetic algorithm," ETRI Journal, Vol. 29, 95-98, 2007.
    doi:10.4218/etrij.07.0206.0128

    21. Lin, Z. Q., M. L. Yao, and X. W. Shen, "Sidelobe reduction of the low profile multi-subarray antenna by genetic algorithm," AEU --- International Journal of Electronics and Communications, Vol. 66, 133-139, 2012.
    doi:10.1016/j.aeue.2011.06.006

    22. Rocca, P., R. L. Haupt, and A. Massa, "Sidelobe reduction through element phase control in uniform subarrayed array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 437-440, 2009.
    doi:10.1109/LAWP.2009.2015899

    23. Li, X., W.-T. Li, X.-W. Shi, J. Yang, and J.-F. Yu, "Modified differential evolution algorithm for pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 137, 371-388, 2013.

    24. Bevelacqua, P. J. and C. A. Balanis, "Optimizing antenna array geometry for interference suppression," IEEE Transactions on Antennas and Propagation, Vol. 55, 637-641, 2007.
    doi:10.1109/TAP.2007.891509

    25. Ahmed, M. F. A. and S. A. Vorobyov, "Sidelobe control in collaborative beamforming via node selection," IEEE Transactions on Signal Processing, Vol. 58, 6168-6180, 2010.
    doi:10.1109/TSP.2010.2077631

    26. Liu, D., Q. Feng, and W.-B. Wang, "Discrete optimization problems of linear array synthesis by using real number particle swarm optimization," Progress In Electromagnetics Research, Vol. 133, 407-424, 2013.

    27. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

    28. Mandal, A., H. Zafar, S. Das, and A. V. Vasilakos, "Efficient circular array synthesis with a memetic differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 38, 367-385, 2012.

    29. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
    doi:10.2528/PIER11052205

    30. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "Near optimal robust adaptive beamforming approach based on evolutionary algorithm," Progress In Electromagnetics Research B, Vol. 29, 157-174, 2011.
    doi:10.2528/PIERB10110810

    31. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch ," Progress In Electromagnetics Research Letters, Vol. 25, 37-46, 2011.

    32. Zitzler, E. and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Trans. Evol. Comput., 257-271, 1999.
    doi:10.1109/4235.797969

    33. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, 2nd Ed., John Wiley & Sons Inc., Hoboken, New Jersey, 2004.

    34. Goudos, S. K., K. Siakavara, E. Vafiadis, and J. N. Sahalos, "Pareto optimal Yagi-Uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
    doi:10.2528/PIER10052302

    35. Ochiai, H., P. Mitran, H. V. Poor, and V. Tarokh, "Collaborative beamforming for distributed wireless ad HOC sensor networks," IEEE Transactions on Signal Processing, Vol. 53, 4110-4124, 2005.
    doi:10.1109/TSP.2005.857028

    36. Dikmese, S., A. Kavak, K. Kucuk, S. Sahin, and A. Tangel, "FPGA based implementation and comparison of beamformers for CDMA2000," Wirel. Pers. Commun., Vol. 57, 233-253, 2011.
    doi:10.1007/s11277-009-9855-4

    37. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.