Vol. 50
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-10
A Compact, Low-Profile, Ultra-Wideband Antenna Utilizing Dual-Mode Coupled Radiators
By
Progress In Electromagnetics Research B, Vol. 50, 235-251, 2013
Abstract
In this paper, we present a low-profile, compact, ultra-wideband antenna that uses a set of closely coupled radiators. The system of two coupled radiators has two different linearly independent modes of operation with complementary frequency bands of operation. These include the differential mode and the common mode of operation. When the antenna is excited in the common mode of operation, it acts as an ultra-wideband (UWB) antenna covering a broad frequency band. When excited in the differential mode, the antenna operates as a wideband dipole in a frequency range below that of the common mode. Thus, by appropriately combining the two modes using a suitably designed feed network, the bandwidth of the antenna can be extended and its lowest frequency of operation is reduced. Mode combining is achieved with a feed network that employs a frequency-dependent phase shifter. Using this feed network, the two modes of the antenna are combined and a single-port broadband device is achieved that has a bandwidth larger than that of either the common or the differential mode individually. A prototype of the antenna is fabricated and experimentally characterized.
Citation
Meng Li, Yazid Yusuf, and Nader Behdad, "A Compact, Low-Profile, Ultra-Wideband Antenna Utilizing Dual-Mode Coupled Radiators," Progress In Electromagnetics Research B, Vol. 50, 235-251, 2013.
doi:10.2528/PIERB13030713
References

1. Schantz, , H., , "The Art and Science of Ultrawideband Antennas," Artech House, , 2005.

2. Goubau, , G., N. N. Puri, and F. Schwering, "Diakoptic theory for multielement antennas," IEEE Trans. Antennas and Propag., Vol. 30, No. 1, 15-26, 1982.
doi:10.1109/TAP.1982.1142741

3. Friedman, , C. H., "Wide-band matching of a small disk-loaded monopole," IEEE Trans. Antennas and Propag., Vol. 33, No. 12, 1142-1148, 1985.
doi:10.1109/TAP.1985.1143488

4. Nakano, , H., H. IWaoka, K. Morishita, and J. Yamauchi, "A wideband low-profile antenna composed of a conducting body of revolution and a shorted parasitic ring," IEEE Trans. Antennas and Propag.,, Vol. 56, No. 4, 1187-1192, 2008.
doi:10.1109/TAP.2008.917010

5. Moon, , H., G.-Y. Lee, C.-C. Chen, and J. L. Volakis, "An extremely lowprofile ferrite-loaded wideband VHF antenna design," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 322-325, 2012.
doi:10.1109/LAWP.2012.2191131

6. Palud, , S., F. Colombel, M. Himdi, and C. L. Meins, "Wideband omnidirectional and compact antenna for VHF/UHF band," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 3-6, 2011.
doi:10.1109/LAWP.2011.2105239

7. Yusuf, , Y. and N. Behdad, "Compact, low-profile UWB antennas exploiting the concept of closely-coupled dual-mode radiators," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, Jul. 2012.

8. Yusuf, , Y. and N. Behdad, "Miniaturization of a class of ultra-wideband antennas using dual-mode radiating structures," 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), , 1-4, Nov. 2012.
doi:10.1109/ICWITS.2012.6417710

9. Elsherbini, , A. and K. Sarabandi, "Very low-profile top-loaded UWB coupled sectorial loops antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 800-803, 2011.
doi:10.1109/LAWP.2011.2164569

10. Behdad, , N. and K. Sarabandi, "A compact antenna for ultrawide-band applications," IEEE Trans. Antennas and Propag., Vol. 53, 2185-2192, 2005.
doi:10.1109/TAP.2005.850750

11. Behdad, , N., M. Al-Joumayly, and M. Salehi, "Ultra-wideband low profile antenna," US Patent No. 8,228,251, 2012.

12. Seeley, , E. W., "An experimental study of the disk loaded folded monopole," IRE Trans. Antennas Propag., Vol. 4, No. 1, 27-28, Jan. 1956.
doi:10.1109/IRETAP.1956.6366292

13. Baum, , C. E., A. P. Stone, and J. S. Tyo, "Ultra-wideband, Short-pulse Electromagnetics 8 ," Springer, 2007.

14. Balanis, , C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley-Interscience, 2005.