Vol. 50
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-02
Permittivity Profile Estimation Based on Non-Radiating Equivalent Source (2D Case)
By
Progress In Electromagnetics Research B, Vol. 50, 157-175, 2013
Abstract
This paper presents a new approach to the electromagnetic inverse scattering formulation of the permittivity profile estimation. The proposed approach is particularly effective for the cases where unknown objects are made of a finite number of homogeneous regions. This approach prevents the need for the Born approximation initial guess and updating the internal total electric field iteratively. The solution to the inverse source problem and scattering problem is not unique. To address the non-uniqueness issue, we have defined the non-radiating objective functions. By minimizing this objective function and applying some constraints, we have been able to obtain a unique permittivity profile. The simulation results indicate that the low-contrast and high-contrast permittivity profiles are accurately estimated by the proposed method. The distinguishing feature of the proposed approach is that by including the non-radiating part of the equivalent source, the unknown permittivity profile becomes the solution to a minimization problem, which is much less computationally intensive as compared to existing methods using iterative field calculation over the entire domain, when applied to large (in terms of wavelength) objects. The high performance of the proposed method for noisy measured data has also been verified.
Citation
Shahed Shahir, Mehrbod Mohajer, Arash Rohani, and Safieddin Safavi-Naeini, "Permittivity Profile Estimation Based on Non-Radiating Equivalent Source (2D Case)," Progress In Electromagnetics Research B, Vol. 50, 157-175, 2013.
doi:10.2528/PIERB13012308
References

1. Autierin, , R., M. Durso, C. Eyraud, A. Litman, V. Pascazio, and T. Isernia, "3d inversion of fresneldatabase with 3d Markov random field," Session 3P6 Inverse Scattering Probelms: Open Problems and New Challenges, , 559, 2010.

2. Berry, , E., A. J. Fitzgerald, N. N. Zinov'ev, G. C. Walker, S. Homer-Vanniasinkam, C. D. Sudworth, R. E. Miles, J. M. Chamberlain, and M. A., "Optical properties of tissue measured using terahertz pulsed imaging," Proceedings of SPIE , Vol. 5030, 459-470, 2003.
doi:10.1117/12.479993

3. Bertero, , M., T. A. Poggio, and V. Torre, "Ill-posed problems in early vision," Proceedings of the IEEE, Vol. 76, No. 8, 869-889, 1988.
doi:10.1109/5.5962

4. Bojarski, , N. N., "Inverse scattering," Technical report, DTIC Document,, 1973.

5. Caorsi, , S., G. Gragnani, M. Pastorino, G. Zunino, and et al, "Microwave imaging based on a Markov random ¯eld model," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 3, 293-303, 1994.
doi:10.1109/8.280714

6. Chen, X., "Application of signal-subspace and optimization method in reconstructing extended scatterers," JOSA A, Vol. 26, 1022-1026, 2009.
doi:10.1364/JOSAA.26.001022

7. Chen, X., "Subspace-based optimization method for solving inverse scattering problems," IEEE Trans. Geosci. Remote Sens , Vol. 48, No. 1, 42-49, 2010.
doi:10.1109/TGRS.2009.2025122

8. Chew, , W. C., Y. M. Wang, and , "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

9. Chew, , W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

10. Chiappe, , M. and G. L. Gragnani, "Analytical solution to inverse electromagnetic scattering: Shape and position reconstruction of dielectric objects," IEEE International Workshop on Imaging Systems and Techniques, 1-6, 2007.
doi:10.1109/IST.2007.379589

11. Crawley, , D., C. Longbottomm, V. P.Wallace, B. Cole, D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," Journal of Biomedical Optics, Vol. 8, No. 2, 303-307, 2003.
doi:10.1117/1.1559059

12. Cui, , T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted born iterative method," IEEE Trans. Geosci. Remote Sens., Vol. 39, 339-346, 2001.
doi:10.1109/36.905242

13. Fieguth, P., , "Statistical Image Processing and Multidimensional Modeling," Spring, Vol. 155, , 2010.

14. Scaf, , C. E. S. G., J. Morais, and L. C. M. Loffredo, "A survey of radiographic measurement estimation in assessment of dental implant length," Oral Surgery, Oral Medicine, Oral Pathology, Oral, Radiology and Endodontology, Vol. 103, , No. 53, 2007.

15. Gilmore, , C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Transactions on Biomedical Engineering , Vol. 57, No. 4, 894-903, 2010.
doi:10.1109/TBME.2009.2036372

16. Gilmore, C., P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 393-396, 2010.
doi:10.1109/LAWP.2010.2049471

17. Gragnani, , G., "Electromagnetic imaging using closed-form radiating and non-radiating currents," Mediterranean Microwave Symposium, 1-6, November 2009.

18. Gragnani, G., "Two-dimensional nonradiating currents for imaging systems: Theoretical development and preliminary assessment," IET Microwaves, Antennas Propagation, Vol. 3, No. 8, 1164-1171, 2009.
doi:10.1049/iet-map.2008.0294

19. Gragnani, , G. and M. D. Mendez, "An improved electromagnetic imaging procedure using non-radiating sources," Mediterranean Microwave Symposium, 188-191, 2010.

20. Hajihashemi, , M. R. and M. El-Shenawee, "Inverse scattering of three-dimensional PEC objects using the level-set method," Progress In Electromagnetics Research, Vol. 116, 23-47, 2011.

21. Harrington, , R. F., Time-Harmonic Electromagnetic Fields, The IEEE Press Series, Pscataway, NJ, 2001.
doi:10.1109/9780470546710

22. Johnson, , S., Y. Tae-Hoon, and R. Jung-Woong, "Inverse scattering solutions of scalar Helmholtz wave equation by a multiple source moment method," Electron. Lett.,, Vol. 19, 130-132, 1983.
doi:10.1049/el:19830092

23. Lavarello, R. J. and M. L. Oelze, "Tomographic reconstruction of three-dimensional volumes using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 10, No. 28, 1643-1653, 2009.
doi:10.1109/TMI.2009.2026274

24. Lee, , K. C., J.-S. Ou, and M. C. Fang, "Application of SVD noise-reduction technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 81, 447-459, 2008.
doi:10.2528/PIER08032101

25. Markel, , V. A., V. Mital, and J. C. Schotland, "Inverse problem in optical diffusion tomography iii inversion formulas and singular value decomposition," J. Opt. Soc. Am. A, Vol. 20, No. 5, 890-902, 2003.
doi:10.1364/JOSAA.20.000890

26. Muller, , C., "Electromagnetic radiation patterns and sources," IRE Transactions on Antennas and Propagation, Vol. 4, No. 3, 224-232, 1956.
doi:10.1109/TAP.1956.1144417

27. Ney, , M. M., A. M. Smith, and S. S. Stuchly, "A solution of electromagnetic imaging using pseudoinverse transformation," IEEE Transactions on Medical Imaging,, 3-4, 1984.

28. Nguyen, , K. L., M. L. Johns, and L. F. Gladden, "Three-dimensional imaging with a terahertz quantum cascade laser," Optics Express, Vol. 14, No. 6, 2006.
doi:10.1364/OE.14.002123

29. Porter, R. and A. Devaney, "Holography and the inverse source problem," Journal of Optical Society of America, Vol. 72, 327-330, 1982.
doi:10.1364/JOSA.72.000327

30. Porter, , R. P., "Diffraction-limited, scalar image formation with holograms of arbitrary shape," Journal of the Optical Society of America,, Vol. 60, No. 8, 1051-1059, 1970.
doi:10.1364/JOSA.60.001051

31. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Antennas and Wireless Propagation , Vol. 13, No. 3, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

32. Tachibana, H. and K. Matsumoto, "Applicability of x-ray computerized tomography in endodontics," Dental Traumatology, Vol. 6, No. 1, 16-20, 1990.
doi:10.1111/j.1600-9657.1990.tb00381.x

33. Wang, Y., W. Chew, and , "An iterative solution of the two-dimensional electromagnetic inverse scattering problem," International Journal of Imaging Systems and Technology, Vol. 1, No. 1, 100-108, 1989.
doi:10.1002/ima.1850010111

34. Winters, , D. W., B. D. Van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Transactions on Antennas and Propagation, Vol. 54, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296

35. Winters, , D. W., B. D. Van Veen, and S. C. Hagness, "A sparsity regularization approach to the electromagnetic inverse scattering problem," IEEE Transactions on Antennas Propagation,, Vol. 58, 145-154, 2010.
doi:10.1109/TAP.2009.2035997

36. Wirgin, , A., "The inverse crime," ArXiv preprint mathph/0401050, 2004.

37. Wolf, , E., "Three-dimensional structure determination of semi transparent objects from holographic data," Optical Communication, Vol. 1, No. 4, 153-156, 1969.
doi:10.1016/0030-4018(69)90052-2