Vol. 51

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-04-17

Novel Nolen Matrix Based Beamforming Networks for Series-Fed Low SLL Multibeam Antennas

By Fanourios Fakoukakis and George Kyriacou
Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013
doi:10.2528/PIERB13011605

Abstract

A new type of cascaded series feed beamforming networks (BFNs) is introduced. The network architecture is based on a dual-series Nolen matrix topology. It is able to produce tapered output amplitude distributions from NxN configurations. The general concept, analysis and systematic design of the BFNs are given. The networks are designed and intended to be used mainly for low Sidelobe Level (SLL) linear Multibeam Antennas (MBAs). Several design examples are presented, along with fabrication and measurements of an S-band prototype.

Citation


Fanourios Fakoukakis and George Kyriacou, "Novel Nolen Matrix Based Beamforming Networks for Series-Fed Low SLL Multibeam Antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605
http://jpier.org/PIERB/pier.php?paper=13011605

References


    1. Hansen, R. C., Phased Array Antennas, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, 2009.

    2. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House, Norwood, MA, 2005.

    3. Ajioka, J. S. and J. L. McFarland, Beam-forming feeds, Antenna Handbook; Theory, Applications and Design, Chapter 19, Y. T. Lo and S. W. Lee, Eds., Van Nostrand Reinhold, New York, 1988.

    4. Butler, J. L. and R. Lowe, "Beam forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 1961.

    5. Shelton, J. P. and K. S. Kelleher, "Multiple beams from linear arrays," IRE Trans. Antennas Propagat., Vol. 9, No. 2, 154-161, Mar. 1961.
    doi:10.1109/TAP.1961.1144964

    6. Moody, H. J., "The systematic design of the Butler matrix," IEEE Trans. Antennas Propagat., Vol. 12, No. 6, 786-788, Nov. 1964.
    doi:10.1109/TAP.1964.1138319

    7. Blass, J., Multidirectional antenna --- A new approach to stacked beams, IRE Int. Conf. Record, Vol. 8, 48-50, 1960.

    8. Nolen, J., Synthesis of multiple beam networks for arbitrary illuminations, Ph.D. Dissertation, Radio Division, Bendix Corp., Baltimore, MD, Apr. 1965.

    9. Shelton, J. P., "Reduced sidelobes for Butler-matrix-fed linear arrays," IEEE Trans. Antennas Propagat., Vol. 17, No. 5, 645-647, Sep. 1969.
    doi:10.1109/TAP.1969.1139525

    10. Li, W.-R., C.-Y. Chu, K.-H. Lin, and S.-F. Chang, "Switched-beam antenna based on modified Butler matrix with low sidelobe level," Electronics Letters, Vol. 40, No. 5, 290-292, Mar. 2004.
    doi:10.1049/el:20040198

    11. Gruszczynski, S., K. Wincza, and K. Sachse, "Reduced sidelobe four-beam N-element antenna arrays fed by 4 × N Butler matrices," IEEE Ant. Propag. Letters, Vol. 5, 430-434, Dec. 2006.
    doi:10.1109/LAWP.2006.885015

    12. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beam-forming networks," IEEE Trans. Antennas Propagat., Vol. 50, No. 2, 225-232, Feb. 2002.
    doi:10.1109/8.997999

    13. Casini, F., R. V. Gatti, L. Marcaccioli, and R. Sorrentino, A novel design method for Blass matrix beam-forming networks, Proc. 37th Europ. Microw. Conf., 1511-1514, Munich, Germany, Oct. 2007.

    14. Fonseca, N. J. G., "Printed S-band 4×4 Nolen matrix for multiple beam antenna applications," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1673-1678, Jun. 2009.
    doi:10.1109/TAP.2009.2019919

    15. Fonseca, N. J. G. and N. Ferrando, Nolen matrix with tapered amplitude law for linear arrays with reduced sidelobe level, Proc. 4th Europ. Conf. Antennas Propagat., 1-5, Barcelona, Spain, Apr. 2010.

    16. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 399-408, 2006.
    doi:10.1163/156939306775701722

    17. Fakoukakis, F. E. and G. A. Kyriacou, On the design of a Butler matrix-based beamformer introducing low sidelobe level and enhanced beam-pointing accuracy, Proc. IEEE-APS Top. Conf. Antennas Propagat. Wirel. Comm., 1265-1268, Torino, Italy, Sep. 2011.

    18. Fakoukakis, F. E., G. A. Kyriacou, and J. N. Sahalos, On the design of Butler-like type matrices for low SLL multibeam antennas, Proc. 6th Europ. Conf. Antennas Propagat., 2604-2608, Prague, Czech Republic, Mar. 2012.

    19. Jones, W. R. and E. C. Dufort, "On the design of optimum dual-series feed networks," IEEE Trans. Microw. Theory & Techn., Vol. 19, No. 5, 451-458, May 1971.
    doi:10.1109/TMTT.1971.1127546

    20. Allen, J. L., "A theoretical limitation on the formation of lossless multiple beams in linear arrays," IRE Trans. Antennas Propagat., Vol. 9, No. 4, 350-352, Jul. 1961.

    21. White, W. D., "Pattern limitations in multiple-beam antennas," IRE Trans. Antennas Propagat., Vol. 10, No. 4, 430-436, Jul. 1962.

    22. DuFort, E. C., "Optimum low sidelobe high crossover multiple beam antennas," IEEE Trans. Antennas Propagat., Vol. 33, No. 9, 946-354, Sep. 1985.
    doi:10.1109/TAP.1985.1143705

    23. Stein, S., "On cross-coupling in multiple beam antennas," IEEE Trans. Antennas Propagat., Vol. 10, No. 5, 548-557, Sep. 1962.
    doi:10.1109/TAP.1962.1137917

    24. Gotsis, K. A., G. A. Kyriacou, and J. N. Sahalos, Improved Butler matrix configuration for smart beamforming operations, Proc. 4th Europ. Conf. Antennas Propagat., 1-4, Barcelona, Spain, Apr. 2010.