Vol. 48
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-02-13
Modeling for Dispersion and Losses of Multilayer Asymmetric CPW on Iso/Anisotropic Substrate
By
Progress In Electromagnetics Research B, Vol. 48, 395-419, 2013
Abstract
In this paper, we reformulate the quasi-static spectral domain analysis (SDA) applicable to a lossy anisotropic multilayer asymmetric coplanar waveguide (ACPW). The SDA formulation also incorporates two-layer model of a conductor thickness and the concept of effective permeability to account for the low frequency dispersion due to the magnetic field penetration in an imperfect conductor. The paper further presents the single layer reduction (SLR) formulation and circuit model to compute frequency dependent line parameters of a lossy anisotropic multilayer ACPW. The accuracy of formulation is comparable to that of the HFSS and CST, without using complex and time consuming full-wave methods. The results of CST for εeff, Z0, αd, αc of multilayer ACPW, in the frequency range 1 GHz-100 GHz, deviate from results of HFSS up to 0.49%, 1.53%, 2.06% and 10.73% respectively; whereas corresponding deviations of the present SDA and SLR combined formulation are up to 1.38%, 2.09%, 3.57% and 8.87%.
Citation
Anand Kumar Verma, Paramjeet Singh, and Ritu Bansal, "Modeling for Dispersion and Losses of Multilayer Asymmetric CPW on Iso/Anisotropic Substrate," Progress In Electromagnetics Research B, Vol. 48, 395-419, 2013.
doi:10.2528/PIERB12121105
References

1. Simon, R. N., Coplanar Waveguide Circuits Components and Systems, John Wiley & Sons, New York, 2001.
doi:10.1002/0471224758

2. Wolff, I., "Coplanar Microwave Integrated Circuits," John Wiley & Sons, New York, 2006.

3. Nguyen, C., "Analysis Methods for RF, Microwave, and Millimeter-wave Planar Transmission Line Structures," John Wiley & Sons, Inc., 2000.

4. Bedair, S. S. and I. Wolff, "Fast accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for (M)MIC's," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 1, 41-48.
doi:10.1109/22.108321

5. Gevorgian, S. S., T. Martinsson, P. L. J. Linner, and E. L. Kolberg, "CAD models for multilayered substrate interdigital capacitors," IEEE Transactions on Microwave Theory and Techniques,, Vol. 44, No. 6, 896-904, Jun. 1996.
doi:10.1109/22.506449

6. Hanna, V. F. and D. Thebault, "Theoretical and experimental investigation of asymmetric coplanar waveguides," IEEE MTT-S Digest, 469-471, 1984.

7. Karpuz, C., A. Gorur, H. Gorur, and M. Alkan, "Fast and simple analytical expressions for quasistatic parameters of asymmetric coplanar lines," Microwave and Optical Technology Letters, Vol. 9, 334-336, Aug. 1995.
doi:10.1002/mop.4650090611

8. Chen, P., X. M. Li, S. J. Fang, and S. Q. Fu, "Calculation and analysis of ACPW and UWB ACPW-slotline transition," International Conference on Signal Processing Systems (ICSPS), 644-646, 2010.

9. Kitazawa, T., "Metallization thickness effect of striplines with anisotropic media: Quasi-static and hybrid-mode analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 4, 769-775, Apr. 1989.
doi:10.1109/22.18852

10. Chang, J. J., "Dispersion characteristics of asymmetrical coplanar waveguide with anisotropic substrate," International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 6, No. 3, 166-173, 1996.
doi:10.1002/(SICI)1522-6301(199605)6:3<166::AID-MMCE2>3.0.CO;2-P

11. Kitazawa, T. and T. Itoh, "Asymmetrical coplanar waveguide with finite metallization thickness containing anisotropic media," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1426-1433, Aug. 1991.
doi:10.1109/22.85421

12. Zhang, J. and T. Y. Hsiang, "Dispersion characteristics of coplanar waveguides at substerahertz frequencies," Progress In Electromagnetics Research Symposium, 232-235, Cambridge, USA, Mar. 26-29, 2006.

13. Hasnain, G., A. Dienes, and J. R. Whinnery, "Dispersion of picosecond pulses in coplanar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 6, 738-741, Jun. 1986.
doi:10.1109/TMTT.1986.1133427

14. Rossi, T., M. Farina, and , Advanced Electromagnetic Analysis of Passive and Active Planar Structures, 95-96, IEE Pub., U.K., 1999.

15. Duyar, M., V. Akan, E. Yazgan, and M. Bayrak, "Analytical attenuation calculation of asymmetrical coplanar waveguide with finite extent ground planes for coplanar waveguide mode," Microwave and Optical Technology Letters, Vol. 49, No. 9, 2082-2087, Sep. 2007.
doi:10.1002/mop.22709

16. Ghione, G., "A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, 1499-1510, Sep. 1993.
doi:10.1109/22.245668

17. Holloway, C. L. and E. F. Kuester, "A quasi-closed form expression for the conductor loss of CPW lines with an investigation of edge shape effects," IEEE Transactions on Microwave Theory Techniques, Vol. 43, No. 12, 2695-2701, Dec. 1995.
doi:10.1109/22.477846

18. Singh, H. and A. K. Verma, "Conductor loss of the coplanar waveguide with conductor backing and top shield," IEEE Asia Pacific Microwave Conference (APMC), Delhi, India, 2004.

19. Majumdar, P. and A. K. Verma, "Accurate CAD model of stopping distance to compute conductor loss of CPW," International Journal Electron. Commun. (AEU), Vol. 64, 1157-1166, 2010.
doi:10.1016/j.aeue.2009.11.004

20. Verma, A. K., Nasimuddin, and H. Singh, "Dielectric loss of multilayer coplanar waveguide using the single layer reduction (SLR) formulation," IEEE Asia Pacific Microwave Conference (APMC), China, Dec. 4-7, 2005.

21. Itoh, T., "Generalized spectral domain method for multiconductor printed lines and its application to tunable suspended microstrips," IEEE Transactions Microwave Theory and Techniques, Vol. 26, No. 12, 983-987, Dec. 1978.
doi:10.1109/TMTT.1978.1129531

22. Tripathi, V. K. and R. T. Kollipara, "Quasi-TEM spectral domain analysis of thick microstrip for microwave and digital integrated circuits," Electronics Letters, Vol. 25, No. 18, 1253-1254, Aug. 1989.
doi:10.1049/el:19890840

23. Verma, A. K. and G. H. Sadr, "Unified dispersion model for multilayer microstrip line," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 7, 1587-1591, Jul. 1992.
doi:10.1109/22.146343

24. Verma, A. K. and R. Kumar, "New empirical unified dispersion model for suspended, shielded and composite substrate microstrip line for microwave and mm-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 8, 1187-1192, Aug. 1998.
doi:10.1109/22.704967

25. Yun, , T. Y. and K. Chang, "Analysis and optimization of a phase shifter controlled by a piezoelectric transducer," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 105-111, Jan. 2002.

26., Ansoft HFSS V.11.1, Ansoft Corp..

26., CST Microwave Studio 2009.

28. Carchon, G., W. De Raedt, and B. Nauwelaers, "Novel approach for a design oriented measurement based fully scaleable coplanar waveguide transmission line model," IEE Proc. Microwaves Antennas Propagation, Vol. 148, No. 4, 227-232, Aug. 2001.
doi:10.1049/ip-map:20010544

29. Hoffman, R. K., Handbook of Microwave Integrated Circuits, Artech House, 1987.

30. Cramapgane, R., M. Ahmadpanah, and J. L. Guiraud, "A simple method for determining the Green's function for a large class of MIC lines having multilayered dielectric structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 26, No. 2, 82-87, Feb. 1978.
doi:10.1109/TMTT.1978.1129317

31. Verma, A. K. and A. Bhupal, "Dielectric loss of multilayer microstrip line," Microwave and Optical Technology Letters, Vol. 17, No. 6, 368-370, Apr. 1998.
doi:10.1002/(SICI)1098-2760(19980420)17:6<368::AID-MOP8>3.0.CO;2-F

32. Swanson, D. G. and J. R. H. Wolfgang, Microwave Circuit and Medelling Using Electromagnetic Field Simulation, Artech House, US, 2003.

33. Ponchak, G. E., I. K. Itotia, and R. F. Drayton, "Propagation characteristics of finite ground coplanar waveguide on Si substrates with porous Si and polyimide interface layers," 33rd European Microwave Conf., 45-48, Munich, 2003.