Vol. 48
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-22
Dispersion Diagram Analysis of Arrays of Multishell Multimaterial Nanospheres
By
Progress In Electromagnetics Research B, Vol. 48, 77-98, 2013
Abstract
In this paper, the characteristics of electromagnetic waves supported by three dimensional (3-D) periodic arrays of multilayer multimaterial spheres are theoretically investigated. The spherical particles have the potential to offer electric and magnetic dipole modes, where their novel arrangements engineer the desired metamaterial performance. Multilayer spheres are designed for controlling both electric and magnetic Mie scattering resonances around the same spectrum. A full wave spherical modal formulation is applied to express the electromagnetic fields in terms of the electric and magnetic multipole modes. Imposing boundary conditions will determine the required equations for obtaining dispersion characteristics ωa/2πc-ka/2π. A metamaterial constructed from unit-cells of multilayer multimaterial sphere is created. It is demonstrated such compositions can exhibit negative-slope dispersion diagram metamaterial properties in frequency spectrums of interest, where both electric and magnetic Mie scattering resonances occur. Different coatings such as silver, gold, indium-tin-oxide (ITO), Al:ZnO, (AZO) and Ga:ZnO (GZO) are used and the operating range and the losses of the resulting metamaterials are compared. It is presented that by adding the third layer to the core-shell structure, due to increased degrees of freedom, the metamaterials operation range will be tunable to the desired frequency.
Citation
Masoud Rostami, Davood Ansari Oghol Beig, and Hossein Mosallaei, "Dispersion Diagram Analysis of Arrays of Multishell Multimaterial Nanospheres," Progress In Electromagnetics Research B, Vol. 48, 77-98, 2013.
doi:10.2528/PIERB12111706
References

1. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, New York, 2006.
doi:10.1002/0471784192

2. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

5. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, 2003.
doi:10.1103/PhysRevB.68.045115

6. Ghadarghadr, S. and H. Mosallaei, "Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 149-160, 2009.
doi:10.1109/TAP.2008.2009725

7. Ghadarghadr, S. and H. Mosallaei, "Coupled dielectric nanoparticles manipulating metamaterials optical characteristics," IEEE Trans. Nanotechnol., Vol. 8, No. 5, 582-594, 2009.
doi:10.1109/TNANO.2009.2013619

8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
doi:10.1103/PhysRevB.77.045104

9. Alam, M. and Y. Massoud, "A closed-form analytical model for singlenanoshells," IEEE Trans. Nanotechnol., Vol. 5, No. 3, 265-272, May 2006.
doi:10.1109/TNANO.2006.874050

10. Alam, M. and Y. Massoud, "RLC ladder model for scattering in singlemetallic nanoparticles," IEEE Trans. Nanotechnol., Vol. 5, No. 5, 491-498, Sep. 2006.
doi:10.1109/TNANO.2006.880403

11. Startton, J. A., Electromagnetic Theory, McGraw Hill, New York, 1941.

12. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed of two different dielectric sphere lattices embedded in a dielectric matrix," 4th Eur. Microw. Conf., 1209-1212, 2004.

13. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Tech. Phys. Lett., Vol. 32, No. 5, 429-433, 2006.
doi:10.1134/S106378500605018X

14. Boltasseva, A. and H. A. Atwater, "Low-loss plasmonic metamaterials," Science, Vol. 331, No. 6015, 290-291, 2011.
doi:10.1126/science.1198258

15. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

16. Yang, W., "Improved recursive algorithm for light scattering by a multilayered sphere," Applied Optics, Vol. 42, No. 9, 1711-1720, 2003.
doi:10.1364/AO.42.001710

17. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1998.
doi:10.1002/9783527618156

18. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

19. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies," Phys. Rev. B, Vol. 73, 045105, 2006.
doi:10.1103/PhysRevB.73.045105

20. Shore, R. A. and A. D. Yaghjian, "Traveling electromagnetic waves on linear periodic arrays of lossless spheres," Electronics Letters, Vol. 41, 578-580, 2005.
doi:10.1049/el:20058372

21. Shore, R. A. and A. D. Yaghjian, "Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers," Radio Sci., Vol. 42, No. 6, 2007, Doi:10.1029/2007RS003647.
doi:10.1029/2007RS003647

22. Alu, A., M. E. Young, and N. Engheta, "Design of nonofilters for optical nanocircuits," Phys. Rev. B, Vol. 77, 144107, 2008.
doi:10.1103/PhysRevB.77.144107

23. Li, W. R., X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ouyang, and Y. B. Chen, "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli," Appl. Microbiol. Biotechnol., Vol. 85, No. 4, 1115-1122, 2010.
doi:10.1007/s00253-009-2159-5

24. Naik, G. V., J. Kim, and A. Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range," Optical Materials Express, Vol. 1, No. 6, 1090-1099, 2011.
doi:10.1364/OME.1.001090

25. Kim, H., J. S. Horwitz, A. Pique, C. M. Gilmore, and D. B. Chrisey, "Electrical and optical properties of indium tin oxide thin ¯lms grown by pulsed laser deposition," Appl. Phys. A, Vol. 69, S447-S450, 1999.
doi:10.1007/s003390051435

26. Mondal, S., K. P. Kanta, and P. Mitra, "Preparation of Al-doped ZnO (AZO) thin film by SILAR," Journal229 of Physical Sciences,, Vol. 12, 221-229, 2008.