Vol. 46
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-12-07
Attachment Modes in the Method of Moments in Time-Domain
By
Progress In Electromagnetics Research B, Vol. 46, 317-336, 2013
Abstract
Efficient and accurate modeling of electromagnetic structures is valuable in antenna analysis and design, and time domain solutions are at a premium over frequency domain in the case of ultra wide band signals or transients. Among the full wave electromagnetic methods in time domain the method of moments in time domain (MoM-TD) is very interesting. Such a method can be implemented, as for frequency domain, either resorting to a thin wire approximation or to a surface patch model. Depending on the structure to be analyzed one or the other is most convenient. For heterogeneous structures both implementations might be needed, and the problem of the attachment between a perfectly conducting thin wire and a perfectly conducting surface is hence relevant. In this paper attachment modes are introduced in MoM-TD. The solution is validated on a test case and against another numerical technique.
Citation
Elson Agastra, Giuseppe Pelosi, and Stefano Selleri, "Attachment Modes in the Method of Moments in Time-Domain," Progress In Electromagnetics Research B, Vol. 46, 317-336, 2013.
doi:10.2528/PIERB12101702
References

1. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.

2. Zhang, G.-H., M. Xia, and X.-M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

3. Harrington, R. F., Field Computation by Moment Methods, Macmillan Series in Electrical Science, MacMillan, New York, NY, 1968.

4. Martin, R. G., A. Salinas, and A. R. Bretones, "Time-domain integral equation methods for transient analysis," IEEE Antennas Propag. Mag., Vol. 34, No. 3, 15-23, 1992.
doi:10.1109/74.153529

5. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 56-61, 1991.
doi:10.1109/8.64435

6. Bost, F., L. Nicolas, and G. Rojat, "A time-domain integral formulation for the scattering by thin wires," IEEE Trans. Magn., Vol. 36, No. 4, 868-871, 2000.
doi:10.1109/20.877581

7. Sadigh, A. and E. Arvas, "Treating the instabilities in marching-on-in-time method from a different perspective," IEEE Trans. Antennas Propag., Vol. 41, No. 12, 1695-1702, 1993.
doi:10.1109/8.273314

8. Guan, X., S. Wang, Y. Su, and J.-J. Mao, "A method to reduce the oscillations of the solution of time domain integral equation using laguerre polynomials," PIERS Online, Vol. 3, No. 6, 784-789, 2007.
doi:10.2529/PIERS060906092326

9. Guarnieri, G., S. Selleri, G. Pelosi, C. Dedeban, and C. Pichot, "Innovative bases and weights for wire junctions in time domain moment method," IET Proc. Microw. Antennas Propag., Vol. 153, 61-66, 2006.
doi:10.1049/ip-map:20045113

10. Agastra, E., C. Dedeban, G. Guarnieri, S. Maddio, G. Pelosi, C. Pichot, and S. Selleri, "Space and time basis function design for the method of moments in time domain analysis of wire and planar structures," Int. J. RF and Microw. Computer Aided Eng., Vol. 21, No. 5, 551-559, 2011.
doi:10.1002/mmce.20541

11. Tekin, I., E. H. Newman, "Method of moments solution for a wire attached to an arbitrary faceted surface," IEEE Trans. Antennas Propag., Vol. 46, 559-562, 1998.
doi:10.1109/8.664121

12. Champagne, N. J., W. A. Johnson, and D. R. Wilton, "On attaching a wire to a triangulated surface," Proc. IEEE Antennas and Propagation Society Int. Symp., Vol. 1, 54-57, 2002.

13. Yu, Y. and A. McCowen, "The fast-multipole method applied to open-PEC problems with triangular type wire-to-surface junctions," COMPEL, Vol. 27, No. 3, 682-702, 2008.
doi:10.1108/03321640810861115

14. Taboada, J. M., J. L. Rodriguez, and F. Obelleiro, "Comparison of moment method solutions for wires attached to arbitrary surfaces," Proc. IEEE Antennas and Propagation Society Int. Symp., Vol. 4, 2302-2305, 2000.

15. Taboada, J. M., J. L. Rodriguez, F. Obelleiro, and M. R. Pino, "Method of moments solution for wires attached to perfect electric conducting surfaces using °oating attachment modes," Proc. IEEE Antennas and Propagation Society Int. Symp., Vol. 4, 754-757, 2001.

16. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetics scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

17. Hwu, S., D. R. Wilton, and S. M. Rao, "Electromagnetic scattering and radiation by arbitrary conducting wire/surface con¯gurations," Proc. IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 890-893, 1988.

18. Makarov, S. N., "Antenna and EM Modeling with Matlab," John Wiley & Sons, 2002.

19. Zhu, H., Z.-H. Wu, X. Y. Zhang, and B.-J. Hu, "Time-domain integral equation solver for radiation from dipole antenna loaded with general bi-isotropic objects," Progress In Electromagnetics Research B, Vol. 35, 349-367, 2011.
doi:10.2528/PIERB11081907

20. Hu, J.-L., C. H. Chan, and Y. Xu, "A new temporal basis function for the time-domain integral equation method," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 11, 465-466, 2001.
doi:10.1109/7260.966043

21. Zhang, M., H.-C. Yin, and Z. Cao, "Transient scattering from arbitrarily shaped two-dimensional objects located on a rough surface," PIERS Online, Vol. 3, No. 5, 616-619, 2007.
doi:10.2529/PIERS061007020935

22. He, S. and G. Zhu, "Analysis of transient scattering from 2-D rough surface using time domain integral equation method," PIERS Online, Vol. 1, No. 3, 313-317, 2005.
doi:10.2529/PIERS050110084006

23. Wang, X., S.-X. Gong, J. Ling, and X.-M. Wang, "Interpolation scheme based on adaptive integral method for solving electrically large radiation problem by surface/surface configuration," Progress In Electromagnetics Research M, Vol. 11, 203-211, 2008.

24. Guan, X., S. Wang, Y. Su, J.-J. Mao, and , "A comparison of performance of four methods in solving time domain integral equations for arbitrarily shaped conducting bodies," PIERS Online, Vol. 3, No. 2, 122-126, 2007.
doi:10.2529/PIERS060906091850