Vol. 45
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-11-06
A Novelistic Fractal Antenna for Ultra Wideband (UWB) Applications
By
Progress In Electromagnetics Research B, Vol. 45, 369-393, 2012
Abstract
Fractal arrays are used to increase the bandwidth of the antenna and to reduce grating lobes. The frequency range from 3.1 to 10.6 GHz is specially allocated for the UWB applications. In this paper, a novel antenna based on fractal concepts for ultra wideband (UWB) applications is analyzed, designed, fabricated and tested. Further the antenna is analyzed using the emerging fractal concepts and transmission line method (TLM). The proposed antenna has a good gain bandwidth with broadside radiation pattern. This design is suitable for 3D IC inter-chip and intra-chip communication, and medical imaging applications. This is called Levy's antenna.
Citation
Dr LEVY M Professor Sir PROFESSOR, Sumanta Bose, Anh Van Dinh, and Dhamodharan Sriram Kumar, "A Novelistic Fractal Antenna for Ultra Wideband (UWB) Applications," Progress In Electromagnetics Research B, Vol. 45, 369-393, 2012.
doi:10.2528/PIERB12100703
References

1. Federal Communications Commission (FCC) "Revision of Part 15 of the commissions's rules regarding ultra-wideband transmissions systems,", First Report and Order, 98-153, ET Docket, 2002.
doi:10.1109/4234.660796

2. Win, M. Z. and R. A. Scholtz, "Impulse radio: How it works," IEEE Communications Letters, Vol. 2, 36-38, 1998.
doi:10.2528/PIER07120202

3. Akhoondzadeh-Asl, L., M. Fardis, A. Abolghasemi, and G. R. Dadashzadeh, "Frequency and time domain characteristic of a novel notch frequency UWB antenna," Progress In Electromagnetics Research, Vol. 80, 337-348, 2008.
doi:10.2528/PIER09062306

4. Chen, D. and C.-H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER08022603

5. Fallahi, R., A. A. Kalteh, and M. G. Roozbahani, "A novel UWB elliptical slot antenna with band-notched characteristics," Progress In Electromagnetics Research, Vol. 82, 127-136, 2008.
doi:10.2528/PIER09011901

6. Lee, J. N. and J. K. Park, "Compact UWB chip antenna design using the coupling concept," Progress In Electromagnetics Research, Vol. 90, 341-351, 2009.
doi:10.2528/PIER07091201

7. Zhang, G.-M., J.-S. Hong, and B.-Z. Wang, "Two novel band-notched UWB slot antennas FED by microstrip line," Progress In Electromagnetics Research, Vol. 78, 209-218, 2008.

8. Malekpoor, H. and S. Jam, "Ultra-wideband shorted patch antennas FED by folded-patch with multi resonances," Progress In Electromagnetics Research B, Vol. 44, 309-326, 2012.

9. Reddy, , G. S., S. K. Mishra, S. Kharche, and J. Mukherjee, "High gain and low cross-polar compact printed elliptical monopole UWB antenna loaded with partial ground and parasitic patches," Progress In Electromagnetics Research B, Vol. 43, 151-167, 2012.

10. Tilanthe, P., P. C. Sharma, and T. K. Bandopadhyay, "A monopole microstrip antenna with enhanced dual band rejection for UWB applications," Progress In Electromagnetics Research B, Vol. 38, 315-331, 2012.
doi:10.2528/PIERB11092701

11. Jusoh, M., M. F. B. Jamlos, M. R. B. Kamarudin, M. F. B. A. Malek, "A MIMO antenna design challenges for UWB application," Progress In Electromagnetics Research B, Vol. 36, 357-371, 2012.

12. Lin, S., L.-Z. Wang, Y. Wang, X.-Y. Zhang, and H.-J. Zhang, "Design and analysis of a circular polarization microstrip antenna with koch fractal edges," Progress In Electromagnetics Research Letters, Vol. 34, 9-19, 2012.

13. Gomez-Nu~nez, E., H. Jardon-Aguilar, J. A. Tirado-Mendez, and R. Flores-Leal, "Ultra-wideband slotted disc antenna compatible with cognitive radio applications," Progress In Electromagnetics Research Letters, Vol. 34, 53-63, 2012.

14. Pouyanfar, N. and S. Ahdi Rezaeieh, "Compact UWB antenna with inverted hat shaped resonator and shortening via pins for filtering properties," Progress In Electromagnetics Research Letters, Vol. 33, 187-196, 2012.
doi:10.2528/PIERL12031002

15. Hayouni, M., A. El Oualkadi, F. Choubani, T. H. Vuong, and J. David, "Antenna ultra wideband enhancement by non-uniform matching," Progress In Electromagnetics Research Letters, Vol. 31, 121-129, 2012.
doi:10.2528/PIERL12032003

16. Zhang, S.-M., F.-S. Zhang, W.-Z. Li, T. Quan, and H.-Y. Wu, "A compact UWB monopole antenna with wimax and WLAN band rejections," Progress In Electromagnetics Research Letters, Vol. 31, 159-168, 2012.
doi:10.2528/PIERL11121401

17. Xu, F., L. Tang, X. Chen, and X.-A. Wang, "Active UWB printed antenna with tunable and switchable band-notched functions," Progress In Electromagnetics Research Letters, Vol. 30, 21-28, 2012.

18. Jiang, W., et al. "A novel UWB antenna with dual notched bands for WiMAX and WLAN applications," IEEE Antennas and Wireless Propagation Letters, 2011.

19. Heong, O. K., et al. "Circuit modeling for rectangular printed disc monopole antenna with slot for UWB system," Third International Conference on Intelligent Systems Modelling and Simulation, 2012.

20. Ghavamani, M., L. B. Michael, and R. Kohno, Ultra Wideband Signals and Systems in Communication Engineering, 2nd Ed., Wiley, New York, 2008.

21. Vaughan, R. and J. B. Andersen, "Channels, propagation and antennas for mobile communications,", Institution of Electrical Engineers, London, 2003.
doi:10.1109/TAP.2004.831405

22. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1739-1748, 2004.
doi:10.1109/74.997888

23. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.

24. Best, S. R., "The fractal loop antenna: A comparison of fractal and non-fractal geometries," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2001.
doi:10.1109/MAP.2003.1189650

25. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, Feb. 2003.

26. Kim, Y. and D. L. Jaggard, "The fractal random array Proceedings of the IEEE,", Vol. 74, No. 9, 1278-1280, 1986.
doi:10.1109/TAP.1987.1144058

27. Lakhtakia, A., N. S. Holter, and V. K. Varadan, "Self-similarity in diffraction by a self-similar fractal screen," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 2, 236-239, Feb. 1987.

28. Gross, F. B., Editor-in-chief, Frontiers in Antennas: Next Generation Design & Engineering, McGraw-Hill, New York, 2011.

29. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, Oct. 1999.

30. Liang, X., W. Zhenson, and W. Wenbing, "Synthesis of fractal patterns from concentric-ring arrays," IEEE Elec. Letters, Oct. 1996.

31. Baliarda, C. P. and R. Pous, "Fractal design of multiband and low side-lobe arrays," IEEE Transactions on Antennas and Propagation, May 1996.

32. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1983, ISBN: 978-0716711865.

33. Rudge, A. W., et al. Editors "The Handbook of Antenna Design,", P. Peregrinus on behalf of the Institution of Electrical Engineers, London, 1982-1983.

34. Waterhouse, R. Editor, "Printed Antennas for Wireless Communications," Wiley, Chichester, England; Hoboken, NJ, 2007.

35. Levy, M., et al. "Rapid beam forming in smart antennas using smart-fractal concepts employing combinational approach algorithms," International Journal on Antennas and Propagation, Vol. 2012, Oct. 2012.

36. Levy, M., D. S. Kumar, A. Dinh, and S. Bose, "A novelistic approach for rapid beam forming in smart antennas for wireless applications using smart-fractal concepts and new algorithm," International Conference on Advances in Mobile Network, Communication and its Applications, (MNCAPPS), 5-1, Aug. 1-2, 2012, doi: 10.1109/MNCApps.2012.7.

37. Valderas, D., et al. Ultra Wideband Antennas, Imperial College Press, 2011.

38. Jian, X., et al. "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, Nov. 2005.

39. Stutzman, W. L., Antenna Theory and Design, John Wiley & Sons, New York, 1998.

40. Connor, F. R., Antennas, E. Arnold, London, 1989.
doi:10.1049/PBEW021E

41. Marcuvitz, N, Waveguide Handbook, P. Peregrinus on behalf of the Institution of Electrical Engineers, London, UK, 1986.

42. ohnson, R. C., Designer Notes for Microwave Antennas, Artech House, Boston, 1991.

43. Bhartia, P., K. V. S. Rao, and R. S. Tomar, Millimeter-wave Microstrip and Printed Circuit Antennas, Artech House, Boston, 1991.

44. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, Norwood, MA, 1980.

45. Balanis, C. A., "Antenna Theory: Analysis and Design," Harper & Row, New York, Toronto, 1982.

46. Hansen, R. C. Editor, Moment Methods in Antennas and Scattering, Artech House, Boston, 1990.

47. Kuecken, J. A., "Exploring Antennas and Transmission Lines by the Personal Computer," Van Nostrand Reinhold, New York, 1986.

48. Fujimotom, K., et al. Small Antennas, Letchworth, Hertfordshire, Research Studies Press, England; Wiley, New York, 1987.

49. Lee, K. F., Principles of Antenna Theory,, Wiley, Chichester, West Sussex; Wiley, New York, 1984.
doi:10.1049/PBEW019E

50. Silver, S. Editor, Microwave Antenna Theory and Design, P. Peregrinus on behalf of the Institution of Electrical Engineers, London, UK, 1984.

51. Carr, J. J., Practical Antenna Handbook, TAB Books, New York, 1994.

52. Chatterjee, R., Antenna Theory and Practice, Wiley, New York, 1988.
doi:10.1049/PBEW035E

53. Burberry, R. A., VHF and UHF Antennas, P. Peregrinus on behalf of the Institution of Electrical Engineers, London, 1992.

54. Gri±ths, J., Radio Wave Propagation and Antennas: An Introduction, Prentice-Hall, Englewood Cliffs, N.J., 1987.

55. James, J. R., P. S. Hall, and C. Wood, "Microstrip Antenna: Theory and design," Peter Peregrinus on behalf of the Institution of Electrical Engineers, London, New York, 1981.

56. Weeks, W. L., Antenna Engineering, McGraw-Hill, New York, 1968.

57. Wolff, E. A., "Antenna Analysis," Artech House, Norwood, MA, 1988.

58. Wait, J. R., Introduction to Antennas & Propagation, P. Peregrinus on behalf of the Institution of Electrical Engineers, London, UK, 1986.