Vol. 45
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-11-05
Indoor Localization in the Presence of RSS Variations via Sparse Solution Finding and Dictionary Learning
By
Progress In Electromagnetics Research B, Vol. 45, 353-368, 2012
Abstract
In the received signal strength (RSS) based indoor wireless localization system, RSS measurements are very susceptible to the complex structures and dynamic nature of indoor environments, which will result in the system failure to achieve a high location accuracy. In this paper, we investigate the indoor positioning problem in the existence of RSS variations without prior knowledge about the localization area and without time-consuming off-line surveys. An adaptive sparsity-based localization algorithm is proposed to mitigate the effects of RSS variations. The novel feature of this method is to adjust both the overcomplete basis (a.k.a. dictionary) and the sparse solution using a dictionary learning (DL) technology based on the quadratic programming approach so that the location solution can better match the actual RSS scenario. Moreover, we extend this algorithm to deal with the problem of positioning targets from multiple categories, a novel problem that few works have ever concerned before. Simulation results demonstrate the superiority of the proposed algorithm over some state-of-art environmental-adaptive indoor localization methods.
Citation
Wei Ke, and Lenan Wu, "Indoor Localization in the Presence of RSS Variations via Sparse Solution Finding and Dictionary Learning," Progress In Electromagnetics Research B, Vol. 45, 353-368, 2012.
doi:10.2528/PIERB12091405
References

1. Liu, H., H. Darabi, H. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions n Systems, Man, and Cybernetics --- Part C, Vol. 37, No. 6, 1067-1080, 2007.
doi:10.1109/TSMCC.2007.905750

2. Lee, J. H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the Newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

3. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

4. Honkavirta, V., T. Perala, S. A. Loytty, and R. Piche, "A comparative survey of WLAN location fingerprinting methods," WPNC, 243-251, 2009.

5. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localization with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

6. Jamlos, M. F. B., A. R. B. Tharek, M. R. B. Kamarudin, P. Saad, M. A. Shamsudin, A. M. M. Dahlan, and , "A novel adaptive Wi-Fi system with RFID technology," Progress In Electromagnetics Research, Vol. 108, 417-432, 2010.
doi:10.2528/PIER10071904

7. Cevher, V., M. F. Duarte, and R. G. Baraniuk, "Distributed target localization via spatial sparsity," EUSIPCO, 25-29, 2008.

8. Cevher, , V., P. Boufounos, R. G. Baraniuk, A. C. Gilbert, and M. J. Strauss, "Near-optimal bayesian localization via incoherence and sparsity," IPSN, 205-216, 2009.

9. Feng, C., S. Valaee, and Z. Tan, "Multiple target localization using compressive sensing," GLOBECOM, 4356-4361, 2009.

10. Feng, C., W. S. A. Au, S. Valaee, Z. Tan, "Orientation-aware indoor localization using affinity propagation and compressive sensing," IEEE CAMSAP, 261-264, 2009.

11. Martinez, E. A., R. Cruz, and J. Favela, "Estimating user location in a WLAN using backpropagation neural networks," IBERAMIA, 737-746, 2004.

12. Rappaport, T. S., Wireless Communication: Principles and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1999.

13. Kushki, A., N. Plataniotis, and A. N. Venetsanopoulos, "Kernel-based positioning in wireless local area networks," IEEE Transactions on Mobile Computing, Vol. 6, No. 6, 689-705, 2007.
doi:10.1109/TMC.2007.1017

14. Candes, E. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

15. Youssef, M., A. Agrawala, and A. U. Shankare, "WLAN location determination via clustering and probability distributions," PerCom, 143-150, 2003.

16. Rubinstein, R., A. M. Bruckstein, and M. Elad, "Dictionaries for sparse representation modeling," Proc. of IEEE, Vol. 98, No. 6, 1045-1057, 2010.
doi:10.1109/JPROC.2010.2040551

17. Chen, S. S., D. L. Donoho, and M. A. Saunrsde, "Atomic decomposition by basis pursuit," SIAM Review, Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X

18. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis Application, Vol. 14, No. 5-6, 877-905, 2008.
doi:10.1007/s00041-008-9045-x

19. Nocedal, J. and S. J. Wright, Numerical Optimization, Springer Verlag, New York, 2006.

20. Dattorro, J., Convex Optimization and Euclidean Distance Geometry, Meboo Publishing, Palo Alto, CA, 2005.

21. Chiang, M. T. and B. Mirkin, "Intelligent choice of the number of clusters in K-means clustering: An experimental study with different cluster spreads," Journal of Classification, Vol. 27, No. 1, 3-40, 2010.
doi:10.1007/s00357-010-9049-5

22. Lim, H., L. C. Kung, J. C. Hou, and H. Luo, "Zero-configuration indoor localization over IEEE 802.11 wireless," Wireless Networks,, Vol. 16, No. 2, 405-420, 2010.
doi:10.1007/s11276-008-0140-3