Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-06
General 2-d Transient Eddy Current Force Equations for a Magnetic Source Moving Above a Conductive Plate
By
Progress In Electromagnetics Research B, Vol. 43, 255-277, 2012
Abstract
When a magnetic source is moved and/or oscillating above a conductive linear plate a traveling time varying magnetic field is created in the airgap. This field induces eddy currents in the plate that can simultaneously create normal and tangential forces. The transient fields and the forces created by the magnetic source are modeled using a novel 2-D analytic based A-Φ method in which the presence of the source field is incorporated into the boundary conditions of the plate. The analytic based solution is obtained by using the spatial Fourier transform and temporal Laplace transform. The performance of the method is compared with a 2-D transient finite element model with a Halbach rotor source field. The derived transient force equations are written in a general form so that they can be applied to any magnetic source.
Citation
Nirmal Paudel, Subhra Paul, and Jonathan Z. Bird, "General 2-d Transient Eddy Current Force Equations for a Magnetic Source Moving Above a Conductive Plate," Progress In Electromagnetics Research B, Vol. 43, 255-277, 2012.
doi:10.2528/PIERB12072414
References

1. Mendrela, E. A. and E. Gierczak, "Two-dimensional analysis of linear induction motor using Fourier's series method," Arch. Elektrotech., Vol. 65, No. 1-2, 97-106, Jan. 1982.
doi:10.1007/BF01476700

2. Lee, S. and R. C. Menendez, "Force on current coils moving over a conducting sheet with applications to magnetic levitation," Proc. IEEE, Vol. 62, No. 5, 567-577, May 1974.
doi:10.1109/PROC.1974.9481

3. Reitz, J. R. and L. C. Davis, "Force on a rectangular coil moving above a conducting slab," J. Appl. Phys., Vol. 43, No. 4, 1547-1553, Apr. 1972.
doi:10.1063/1.1661359

4. Borcherts, R. H. and L. C. Davis, "Force on a coil moving over a conducting surface including edge and channel effects," J. Appl. Phys., Vol. 43, No. 5, 2418-2427, May 1972.
doi:10.1063/1.1661513

5. Freeman, E. M. and C. Papageorgiou, "Spatial Fourier transforms: A new view of end effects in linear induction motors," Proc. IEE, Vol. 125, No. 8, 747-753, Aug. 1978.

6. Yamamura, S., Theory of Linear Induction Motors, University of Tokyo Press, 1979.

7. Panas, S. M. and E. E. Kriezis, "Determination of the field and the forces on a current filament moving above a conducting plate," Arch. Elektrotech., Vol. 68, No. 4, 293-298, 1985.
doi:10.1007/BF01845942

8. Paudel, N. and J. Z. Bird, "General 2D steady-state force and power equations for a traveling time-varying magnetic source above a conductive plate," IEEE Trans. Mag., Vol. 48, No. 1, 95-100, Jan. 2012.
doi:10.1109/TMAG.2011.2161638

9. Davis, L. C. and D. F. Wilkie, "Analysis of motion of magnetic levitation systems: Implications for high-speed vehicles," J. Appl. Phy., Vol. 42, No. 12, 4779-4793, Nov. 1971.
doi:10.1063/1.1659855

10. Moon, F. C., Superconducting Levitation, John Wiley & Sons, New York, 1994.

11. Fink, H. J. and C. E. Hobrecht, "Instability of vehicles levitated by eddy current repulsion-case of an infinitely long current loop," J. App. Phy., Vol. 42, No. 9, 3446-3450, Aug. 1971.
doi:10.1063/1.1660751

12. Krakowski, M., "Eddy currents in a metallic disk and axial force on it due to suddenly applied magnetic field," Archiv fur Elektro., Vol. 65, No. 11-13, 1982.

13. Bird, J. and T. A. Lipo, "Calculating the forces created by an electrodynamic wheel using a 2D steady-state finite element model," IEEE Trans. Mag., Vol. 44, No. 3, 365-372, Mar. 2008.
doi:10.1109/TMAG.2007.913038

14. Langerholc, J., "Electrodynamics of a magnetic levitation coil," J. App. Phy., Vol. 44, 2829-2837, 1973.
doi:10.1063/1.1662657

15. Paudel, N., "Dynamic suspension modeling of an eddy-current device: An applicaiton to MAGLEV," , University of North Carolina at Charlotte, Charlotte, NC, 2012.
doi:10.2528/PIER06080903

16. Faiz, J., "Time stepping finite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Electromagnetic Research, Vol. 68, 53-70, 2007.

17. Bedrosian, G., "High-performance computing for finite element methods in low-frequency electromagnetics," Progress In Electromagnetic Research, Vol. 7, 57-110, 1993.
doi:10.1109/20.92372

18. Tsuboi, H., M. Tanaka, T. Misaki, and T. Naito, "Computation accuracies of boundary element method and finite element method in transient eddy current analysis," IEEE Trans. Mag., Vol. 24, No. 6, 3174-3176, Nov. 1988.

19. Paudel, N., J. Z. Bird, S. Paul, and D. Bobba, "Modeling the dynamic suspension behavior of an eddy current device," IEEE Energy Conv. Cong. Exp., 1692-1699, Phoenix, AZ, Sep. 17-22, 2011.
doi:10.2528/PIERB08022010

20. Lindell, I. V. and A. H. Sihvola, "Reflection and transmission of waves at the interface of perfect electromagnetic conductor," Progress In Electromagnetic Research B, Vol. 5, 169-183, 2008.
doi:10.1177/0583102404048517

21. Sodano, H. A. and J. Bae, "Eddy current damping in structures," Shock Vib. Dig., Vol. 36, 469-478, Nov. 2004.
doi:10.1109/JPROC.2009.2030231

22. Thompson, M. T., "Practical issues in the use of NdFeB permanent magnets in maglev, motors, bearings, and eddy current breaks," Proc. IEEE, Vol. 97, No. 11, 1758-1767, Nov. 2009.
doi:10.1109/JPROC.2009.2030249

23. Hellinger, R. and P. Mnich, "Linear motor-powered transportation: History, present status, and future outlook," Proc. IEEE, Vol. 97, No. 11, 1892-1900, Nov. 2009.
doi:10.1109/TMAG.2009.2021160

24. Bird, J. and T. A. Lipo, "Modeling the 3-D rotational and translational motion of a Halbach rotor above a split-sheet guideway," IEEE Trans. Mag., Vol. 45, No. 9, 3233-3242, Sep. 2009.

25. Kirpo, M., S. Tympel, T. Boeck, D. Krasnov, and A. Thess, "Electromagnetic drag on a magnetic dipole near a translating onducting bar," J. Appl. Phy., Vol. 109, No. 113921, 2011.

26. Williamson, S. and E. K. C. Chan, "Three-dimensional finite-element formulation for problems involving time-varying fields, relative motion, and magnetic saturation," Proc. IEE Part A, Vol. 140, No. 2, 121-130, Mar. 1993.
doi:10.1109/TMAG.2004.828933

27. Xia, Z. P., Z. Q. Zhu, and D. Howe, "Analytical magnetic field analysis of Halbach magnetized permanent-magnet machines," IEEE Trans. Mag., Vol. 40, No. 4, 1864-1872, 2004.

28. Atallah, K., D. Howe, P. H. Mellor, and D. A. Stone, "Rotor loss in permanent-magnet brushless AC machines," IEEE Trans. Ind. Appl., Vol. 36, No. 6, 1612-1618, Nov./Dec. 2000.
doi:10.1109/20.123897

29. Muramatsu, K., T. Nakata, N. Takahashi, and K. Fujiwara, "Comparison of coordinate systems for eddy current analysis in moving conductors," IEEE Trans. Mag., Vol. 28, 1186-1189, 1992.

30. Polyanin, A. D. and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman & Hall, 2007.

31. Freeman, E. M. and C. Papageorgiou, "Spatial Fourier transforms: A new view of end effects in linear induction motors," Proc. IEE, Vol. 125, No. 8, 747-753, Aug. 1978.

32. Griffiths Introduction to Electrodynamics, 3rd Edition, Prentice Hall, 1999.
doi:10.1007/BF01576117

33. Hannakam, L., "Transienter skineffekt in einer platte endlicher dicke bei beeliebiger form der erregenden leiterschleife," Arch. Elektrotech., Vol. 60, 361-371, 1978.
doi:10.1109/TMAG.2008.919482

34. Theodoulidis, T., "Developments in calculating the transient eddy-current response from a conductive plate," IEEE Trans. Mag., Vol. 44, No. 7, 1894-1896, 2008.

35. Churchill, R. V., Operational Mathematics, 3rd Edition, McGraw-Hill, Inc., 1972.