Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-13
Efficient Impedance Computation for Multiconductor Transmission Lines of Rectangular Cross Section
By
Progress In Electromagnetics Research B, Vol. 43, 373-391, 2012
Abstract
An efficient numerical solution is presented for computing per-unit-length impedance of metallic rectangular transmission lines backed by semi-infinite lossy substrate. We formulate the problem into the set of integral equations, the kernel of which is analytically expressed in terms of special functions in the quasi-static regime. The method of moments is applied to find the current density distributions in the metal regions, where the discretization of cross sections is performed by using non-uniform grid arranged according to the skin effect. The practical numerical computations concern the influence of the substrate loss on the per-unit-length impedance for some types of parallel lines. We thereby show that the substrate loss cannot be neglected at high frequencies. The effectiveness of the proposed method is confirmed by showing that the computed values of resistance satisfy the law of energy conservation with acceptable accuracy.
Citation
Makoto Matsuki, and Akira Matsushima, "Efficient Impedance Computation for Multiconductor Transmission Lines of Rectangular Cross Section," Progress In Electromagnetics Research B, Vol. 43, 373-391, 2012.
doi:10.2528/PIERB12071105
References

1. Hall, S. H. and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs, John Wiley & Sons, 2009.
doi:10.1002/9780470423899

2. Bogatin, E., Signal and Power Integrity - Simplified, Pearson Education, 2009.

3. Cockcroft, J. D., "Skin effect in rectangular conductors at high frequencies," Proc. Roy. Soc. London, Vol. A122, 533-542, 1929.

4. Smith, G. R., "Proximity effect in systems of parallel conductors," J. Appl. Phys., Vol. 43, No. 5, 2196-2203, 1972.
doi:10.1063/1.1661474

5. Berleze, S. L. M. and R. Robert, "Skin and proximity effects in nonmagnetic conductors," IEEE Trans. on Education, Vol. 46, No. 3, 368-372, 2003.
doi:10.1109/TE.2003.814591

6. Faraji-Dana, R. and Y. Chow, "Edge condition of the field and a.c. resistance of a rectangular strip conductor," IEE Proc., Vol. 137, Pt. H, No. 2, 133-140, 1990.

7. Kiang, J.-F., "Integral equation solution to the skin effect problem in conductor strip of finite thickness," IEEE Trans. on Microwave Theory and Tech., Vol. 39, No. 3, 452-460, 1991.
doi:10.1109/22.75287

8. Sarkar, T. K. and A. R. Djordjevic, "Wideband electromagnetic analysis of finite-conductivity cylinders," Progress In Electromagnetics Research, Vol. 16, 153-173, 1997.
doi:10.2528/PIER96060200

9. Antonini, G., A. Orlandi, and C. R. Paul, "Internal impedance of conductors of rectangular cross section," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 7, 979-985, 1999.
doi:10.1109/22.775429

10. Ymeri, H., B. Nauwelaers, and B. Maex, "Distributed inductance and resistance per-unit-length formulas for VLSI interconnects on silicon substrate," Microwave and Optical Technology Letters, Vol. 30, No. 5, 302-304, 2001.
doi:10.1002/mop.1296

11. Niknejad, A. M. and R. G. Meyer, "Analysis of eddy-current losses over conductive substrates with applications to monolithic inductors and transformers," IEEE Trans. on Microwave Theory and Tech., Vol. 49, No. 1, 166-176, 2001.
doi:10.1109/22.900004

12. Tsuchiya, A. and H. Onodera, "Patterned floating dummy fill for on-chip spiral inductor considering the effect of dummy fill," IEEE Trans. on Microwave Theory and Tech., Vol. 56, No. 12, 3217-3222, 2008.
doi:10.1109/TMTT.2008.2007362

13. Matsuki, M. and A. Matsushima, "Improved numerical method for computing internal impedance of a rectangular conductor and discussions of its high frequency behavior," Progress In Electromagnetics Research M, Vol. 23, 139-152, 2012.
doi:10.2528/PIERM11122105

14. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

15. Matsushima, A. and H. Sakamoto, "Application of wire model to calculation of impedance of transmission lines with arbitrary cross sections," Electronics and Communication in Japan (Part II: Electronics), Vol. 85, No. 7, 1-10, 2002.
doi:10.1002/ecjb.10036

16. Carson, J. R., "Wave propagation in overhead wires with ground return," Bell Sys. Tech. J., Vol. 5, 539-554, 1926.
doi:10.1002/j.1538-7305.1926.tb00122.x

17. Abramowitz, M. and A. Stegun, Handbook of Mathematical Functions, Ch. 12, Dover, New York, 1972.

18. Higgins, T. J., "Formulas for the geometrical mean distance of rectangular areas and line segments," Appl. Phys., Vol. 14, No. 2, 188-195, 1943.

19. Holloway, C. L. and E. F. Kuester, "DC internal inductance for a conductor of rectangular cross section," IEEE Trans. on Electromag. Compat., Vol. 51, No. 2, 338-344, 2009.
doi:10.1109/TEMC.2009.2016104

20. Heinrich, W., "Comments on `Internal impedance of conductors of rectangular cross section‘," IEEE Trans. on Microwave Theory and Tech., Vol. 49, No. 3, 580-581, 2001.
doi:10.1109/22.910570

21. Rong, A. and A. C. Cangellaris, "Note on the definition and calculation of the per-unit-length internal impedance of a uniform ," IEEE Trans. on Electromag. Compat., Vol. 49, No. 3, 677-681, 2007.
doi:10.1109/TEMC.2007.903043

22. Ghione, G. and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electron. Lett., Vol. 20, No. 4, 179-181, 1984.
doi:10.1049/el:19840120

23. Hasegawa, H., M. Furukawa, and H. Yanai, "Properties of microstrip line on Si-SiO2 system," IEEE Trans. on Microwave Theory and Tech., Vol. 19, No. 11, 869-881, 1971.
doi:10.1109/TMTT.1971.1127658

24. Milanovic, V., M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, "Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 46, No. 5, 632-640, 1998.
doi:10.1109/22.668675

25. Eudes, T., B. Ravelo, and M. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.

26. Stratton, J. A., Electromagnetic Theory, Sec. 9.16, McGraw-Hill, NY, 1941.

27. Ilarionov, Y. A., E. A. Bukvarev, I. D. Krotov, and V. I. Naryshkin, "The fundamental electromagnetic wave of a single-wire line in a weakly absorbing medium," J. Commun. Tech. Electron., Vol. 52, No. 2, 140-146, 2007.
doi:10.1134/S1064226907020039