Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-01
Electromagnetic Analysis of a Modular Flux-Switching Permanent-Magnet Motor Using Finite-Element Method
By
Progress In Electromagnetics Research B, Vol. 43, 239-253, 2012
Abstract
This paper proposes a new 3-phase flux-switching permanent-magnet (FSPM) motor, termed as modular FSPM (M-FSPM) motor, for high reliability applications. Due to PMs in the stator, the proposed motor offers high efficiency, simple and robust rotor structure, and good thermal dissipation conditions. The key is the new motor topology which incorporates the concept of fault-tolerant teeth to provide the desired decoupling among phases. By using finite element method, the proposed M-FSPM motor is analyzed as compared with the existing fault-tolerant FSPM (FT-FSPM) motor. The results show that the proposed M-FSPM motor not only retains the merits of high power density, strong mechanical integrity, good immunity from thermal problem and high torque capability, but also offers lower torque ripple, higher average torque and lower cost than the existing FT-FSPM motor. A proposed M-FSPM motor is designed and built for exemplification. Experimental results of the prototype are given to confirm the validity of the proposed motor.
Citation
Wenxiang Zhao, Ming Cheng, Jinghua Ji, and Ruiwu Cao, "Electromagnetic Analysis of a Modular Flux-Switching Permanent-Magnet Motor Using Finite-Element Method," Progress In Electromagnetics Research B, Vol. 43, 239-253, 2012.
doi:10.2528/PIERB12062908
References

1. Chau, K. T. and C. C. Chan, "Emerging energy-efficient technologies for hybrid electric vehicles," Proceedings of the IEEE, Vol. 95, No. 4, 821-835, 2007.
doi:10.1109/JPROC.2006.890114

2. Cao, W., B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, "Overview of electric motor technologies used for more electric aircraft (MEA)," IEEE Transactions on Industrial Electronics, Vol. 59, No. 9, 3523-3531, 2012.
doi:10.1109/TIE.2011.2165453

3. Liang, J., L. Jian, G. Xu, and Z. Shao, "Analysis of electromagnetic behavior in switched reluctance motor for the application of integrated air conditioner on-board charger system," Progress In Electromagnetics Research, Vol. 124, 347-364, 2012.
doi:10.2528/PIER11112501

4. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407

5. Gopalakrishnan, S., A. M. Omekanda, and B. Lequesne, "Classification and remediation of electrical faults in the switched reluctance drive," IEEE Transactions on Industry Applications, Vol. 42, No. 2, 479-486, 2006.
doi:10.1109/TIA.2006.870044

6. Hennen, M. D., M. Niessen, C. Heyers, H. J. Brauer, and R. W. De Doncker, "Development and control of an integrated and distributed inverter for a fault tolerant five-phase switched reluctance traction drive," IEEE Transactions on Power Electronics, Vol. 27, No. 2, 547-554, 2012.
doi:10.1109/TPEL.2011.2132763

7. Chau, K. T., C. C. Chan, and C. Liu, "Overview of permanent magnet brushless drives for electric and hybrid electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, 2246-2257, 2008.
doi:10.1109/TIE.2008.918403

8. El-Refaie, A. M., "Fault-tolerant permanent magnet machines: A review," IET Electric Power Applications, Vol. 5, No. 1, 59-74, 2011.
doi:10.1049/iet-epa.2009.0117

9. Jack, A. G., B. C. Mecrow, and J. Haylock, "A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications," IEEE Transactions on Industry Applications, Vol. 32, No. 4, 889-895, 1996.
doi:10.1109/28.511646

10. Sun, Z., J. Wang, G. Jewell, and D. Howe, "Enhanced optimal torque control of fault-tolerant permanent magnet machines under flux weakening operations," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 344-353, 2010.
doi:10.1109/TIE.2009.2038336

11. Dwari, S. and L. Parsa, "Fault-tolerant control of five-phase permanent magnet motors with trapezoidal back-EMF," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, 476-485, 2011.
doi:10.1109/TIE.2010.2045322

12. Cheng, M., W. Hua, J. Zhang, and W. Zhao, "Overview of stator-permanent magnet brushless machines," IEEE Transactions on Industrial Electronics, Vol. 58, No. 11, 5087-5101, 2011.
doi:10.1109/TIE.2011.2123853

13. Liu, C., K. T. Chau, J. Z. Jiang, and S. Niu, "Comparison of stator-permanent-magnet brushless machines," IEEE Transactions on Magnetics, Vol. 44, No. 11, 4405-4408, 2008.
doi:10.1109/TMAG.2008.2002632

14. Thomas, A. S., Z. Q. Zhu, and G. W. Jewell, "Comparison of flux switching and surface mounted permanent magnet generators for high-speed applications," IET Electrical Systems in Transportation, Vol. 1, No. 3, 111-116, 2011.
doi:10.1049/iet-est.2010.0049

15. Zhang, Z., Y. Tao, and Y. Yan, "Investigation of a new topology of hybrid excitation doubly salient brushless DC generator," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2550-2556, 2012.
doi:10.1109/TIE.2011.2159957

16. Zhao, W., K. T. Chau, M. Cheng, J. Ji, and X. Zhu, "Remedial brushless AC operation of fault-tolerant doubly-salient permanent-magnet motor drives," IEEE Transactions on Industrial Electronics, Vol. 57, No. 6, 2134-2141, 2010.
doi:10.1109/TIE.2009.2033824

17. Zhu, Z. Q. and J. T. Chen, "Advanced flux-switching permanent magnet brushless machines," IEEE Transactions on Magnetics, Vol. 46, No. 6, 1447-1453, 2010.
doi:10.1109/TMAG.2010.2044481

18. Zhao, W., M. Cheng, W. Hua, H. Jia, and R. Cao, "Back-EMF harmonic analysis and fault-tolerant control of flux-switching permanent-magnet machine with redundancy," IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, 1926-1936, 2011.
doi:10.1109/TIE.2010.2050758

19. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

20. Cao, R., M. Cheng, C. Mi, W. Hua, X. Wang, and W. Zhao, "Modeling of a complementary and modular linear flux-switching permanent magnet motor for urban rail transit applications," IEEE Transactions on Energy Conversion, Vol. 27, No. 2, 489-497, 2012.
doi:10.1109/TEC.2012.2190985

21. Owen, R. L., Z. Q. Zhu, A. S. Thomas, G. W. Jewell, and D. Howe, "Alternate poles wound flux-switching permanent-magnet brushless ac machines," IEEE Transactions on Industry Applications, Vol. 46, No. 2, 790-797, 2010.
doi:10.1109/TIA.2009.2039913

22. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406

23. Jian, L., G. Xu, G. Yu, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.

24. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402