Vol. 42

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-07-24

Comprehensive Solution to Scattering by Bianisotropic Objects of Arbitrary Shape

By Chong Mei, Moamer Hasanovic, Jay Kyoon Lee, and Ercument Arvas
Progress In Electromagnetics Research B, Vol. 42, 335-362, 2012
doi:10.2528/PIERB12062009

Abstract

This paper presents a method of moments (MoM) solution for the problems of electromagnetic scattering by inhomogeneous three-dimensional bianisotropic scatterers of any shape. The electromagnetic response of bianisotropy has been described by the constitutive relations of the most general form composed of four 3 x 3 matrices or tensors. The volume equivalence principle is used to obtain a set of mixed potential formulations for a proper description of the original scattering problem. Here, the total fields are separated into the incident fields and the scattered fields. The scattered fields are related to the electric and magnetic potentials which are excited by electric and magnetic bound charges and polarization currents. The body of the scatterer is meshed through the use of tetrahedral cells with face-based functions used to expand unknown quantities. At last, the Galerkin test method is applied to create a method of moments (MoM) matrix from which the numerical solution is obtained. Implemented in a MATLAB program, the numerical formulation is evaluated and verified for various types of scatterers. The results are compared with those of previous work, and a good agreement is observed. Finally, a scattering from a two-layered dispersive chiroferrite sphere is presented as the most general example.

Citation


Chong Mei, Moamer Hasanovic, Jay Kyoon Lee, and Ercument Arvas, "Comprehensive Solution to Scattering by Bianisotropic Objects of Arbitrary Shape," Progress In Electromagnetics Research B, Vol. 42, 335-362, 2012.
doi:10.2528/PIERB12062009
http://jpier.org/PIERB/pier.php?paper=12062009

References


    1. Nurgaliev, T., S. Miteva, A. P. Jenkins, and D. D. Hughes, "Investigation of MW characteristics of HTS microstrip and coplanar resonators with ferrite thin-film components," IEEE Trans. Microwave Theory Tech., Vol. 51, 33-40, Jan. 2003.
    doi:10.1109/TMTT.2002.806944

    2. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electron. Lett., Vol. 29, No. 12, 1048-1049, Jun. 1993.
    doi:10.1049/el:19930699

    3. Lindell, I. V., "Variational method for the analysis of lossless bi-isotropic (nonreciprocal chiral) waveguides," IEEE Trans. Microwave Theory Tech., Vol. 40, 402-405, Feb. 1992.
    doi:10.1109/22.120115

    4. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propagat., Vol. 46, 1395-1397, Sep. 1998.
    doi:10.1109/8.719989

    5. Kluskens, M. S. and E. H. Newman, "A microstrip line on a chiral substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, 1889-1891, Nov. 1991.

    6. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE Antennas and Propagation Society Newsletter, Vol. 30, 6-12, Oct. 1988.

    7. Krowne, C. M., "Electromagnetic properties of nonreciprocal composite chiral-ferrite media," IEEE Trans. Antennas Propagat., Vol. 41, 1289-1293, Sep. 1993.
    doi:10.1109/8.247756

    8. Krowne, C. M., "Full-wave spectral Green's function integral-equation calculation of coplanar ferroelectric thin-film transmission structures," Microwave Opt. Technol. Lett., Vol. 26, 187-192, 2000.
    doi:10.1002/1098-2760(20000805)26:3<187::AID-MOP15>3.0.CO;2-E

    9. Krowne, C. M., "Theoretical considerations for finding anisotropic permittivity in layered ferroelectric/ferromagnetic structures from full-wave electromagnetic simulations," Microwave Opt. Technol. Lett., Vol. 28, 63-69, 2001.
    doi:10.1002/1098-2760(20010105)28:1<63::AID-MOP18>3.0.CO;2-Q

    10. Krowne, C. M., M. Daniel, S. W. Kirchoefer, and J. M. Pond, "Anisotropic permittivity and attenuation extraction from propagation constant measurements using an anisotropic full-wave Green's function solver for coplanar ferroelectric thin-film devices ," IEEE Trans. Microwave Theory Tech., Vol. 50, 537-548, Feb. 2002.
    doi:10.1109/22.982233

    11. Hanson, G. W., "A numerical formulation of dyadic Green's functions for planar bianisotropic media with application to printed transmission lines ," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 144-151, Jan. 1996.
    doi:10.1109/22.481396

    12. Cloete, J. H., M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Comm., Vol. 55, No. 4, 223-239, Jul. 2001.

    13. Demir, V., A. Elsherbeni, D. Worasawate, and E. Arvas, "A graphical user interface (GUI) for plane wave scattering from a conducting, dielectric or a chiral sphere,", Software at ACES web site: http://aces.ee.olemiss.edu, Syracuse, Sep. 2004 .

    14. Tsalamengas, J. L., "Interaction of electromagnetic waves with general bianisotropic slabs," IEEE Trans. Microwave Theory Tech., Vol. 4, 1870-1878, Oct. 1992.

    15. Demir, V., "Electromagnetic scattering from three-dimensional chiral objects using the FDTD method,", Ph.D. Dissertation, Syracuse University, 2004.

    16. Alu, A., F. Bilotti, and L. Vegni, "Extended method of line procedure for the analysis of microwave components with bianisotropic inhomogeneous media," IEEE Trans. Antennas Propagat., Vol. 51, 1582-1589, Jul. 2003.

    17. Yagli, A. F., "Electromagnetic scattering from three-dimensional gyrotropic objects using the transmission line modeling (TLM) method,", Ph.D. Dissertation, Syracuse University, 2006.

    18. Demir, A., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propagat., Vol. 53, 3374-3384, Oct. 2005.

    19. Bilotti, F., A. Toscano, and L. Vegni, "FEM-BEM formulation for the analysis of cavity-backed patch antennas on chiral substrates," IEEE Trans. Antennas Propagat., Vol. 51, 306-311, Feb. 2003.
    doi:10.1109/TAP.2003.809076

    20. Valor, L. and J. Zapata, "An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials," IEEE Trans. Microwave Theory Tech., Vol. 44, 291-296, Feb. 1996.
    doi:10.1109/22.481579

    21. Valor, L. and J. Zapata, "A simplified formulation to analyze inhomogeneous waveguide with lossy chiral media using the finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 46, 185-187, Feb. 1998.
    doi:10.1109/22.660985

    22. Mei, C., M. Hasanovic, J. K. Lee, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomoge-neous bianisotropic body," PIERS Online, Vol. 3, No. 5, 680-684, 2007.
    doi:10.2529/PIERS061005231254

    23. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
    doi:10.1109/TAP.1982.1142818

    24. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, 77-85, Jan. 1984.
    doi:10.1109/TAP.1984.1143193

    25. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, 276-281, Mar. 1984.
    doi:10.1109/TAP.1984.1143304

    26. Carvalho, S. A. and L. S. Mendes, "Scattering of EM waves by inhomogeneous dielectrics with the use of the method of moments and 3-D solenoidal basis functions," Microwave and Optical Technology Letters, Vol. 23, No. 1, 42-46, Oct. 1999.
    doi:10.1002/(SICI)1098-2760(19991005)23:1<42::AID-MOP12>3.0.CO;2-N

    27. Worasawate, D., "Electromagnetic scattering from an arbitrarily shaped three-dimensional chiral body,", Ph.D. Dissertation, Syracuse University, 2002.

    28. Hasanovic, M., "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomogeneous chiral body,", Ph.D. Dissertation, Syracuse University, 2006.

    29. Zhu, X. Q., Y. L. Geng, and X. B. Wu, "Application of MOM-CGM-FFT method to scattering from three-dimensional anisotropic scatterers," Chinese J. Radio Sci., Vol. 17, No. 3, 209-215, 2002 (in Chinese).

    30. Geng, Y., X. Wu, and L. Li, "Analysis of electromagnetic scattering by a plasma anisotropic sphere," Radio Science, Vol. 38, No. 6, 12-1-12-12, Dec. 2003.
    doi:10.1029/2003RS002913

    31. Geng, Y. and X. Wu, "A plane electromagnetic wave scattering by a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 161-179, 2004.
    doi:10.1163/156939304323062022

    32. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, "A fast combined field volume integral equation solution to EM scattering by 3-D dielectric objects of arbitrary permittivity and permeability," IEEE Trans. Antennas Propagat., Vol. 54, 961-969, Mar. 2006.
    doi:10.1109/TAP.2006.869927

    33. Mendes, L. S. and S. A. Carvalho, "Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions," Microwave and Optical Technology Letters, Vol. 12, No. 6, 327-331, Aug. 1996.
    doi:10.1002/(SICI)1098-2760(19960820)12:6<327::AID-MOP7>3.0.CO;2-H

    34. Kulkarni, S., R. Lemdiasov, R. Ludwig, and S. Makarov, "Comparison of two sets of low-order basis functions for tetrahedral VIE modeling," IEEE Trans. Antennas Propagat., Vol. 52, 2789-2794, Oct. 2004.