Vol. 42

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-07-17

Space-Time Adaptive Processing Based on Weighted Regularized Sparse Recovery

By Zhaocheng Yang, Xiang Li, and Hongqiang Wang
Progress In Electromagnetics Research B, Vol. 42, 245-262, 2012
doi:10.2528/PIERB12051804

Abstract

In this paper, novel space-time adaptive processing algorithms based on sparse recovery (SR-STAP) that utilize weighted l1-norm penalty are proposed to further enforce the sparsity and approximate the original l0-norm. Because the amplitudes of the clutter components from different snapshots are random variables, we design the corresponding weights according to two different ways, i.e., the Capon's spectrum using limited snapshots and the Fourier spectrum using the current snapshot. Moreover, we apply the weighted idea to both the direct data domain (D3) SR-STAP and SR-STAP using multiple snapshots from adjacent target-free range bins. Simulation results illustrate that our proposed algorithms outperform the existing SR-STAP and D3SR-STAP algorithms.

Citation


Zhaocheng Yang, Xiang Li, and Hongqiang Wang, "Space-Time Adaptive Processing Based on Weighted Regularized Sparse Recovery," Progress In Electromagnetics Research B, Vol. 42, 245-262, 2012.
doi:10.2528/PIERB12051804
http://jpier.org/PIERB/pier.php?paper=12051804

References


    1. Ward, J., "Space-time adaptive processing for airborne radar,", Technical Report 1015, -MIT Lincoln laboratory, Lexington, MAvol, Dec. 1994.

    2. Klemm, R., Applications of Space-time Adaptive Processing, The Institution of Electrical Engineers, London, UK, 2004.

    3. Guerci, J. R., Space-time Adaptive Processing for Radar, Artech House, 2003.
    doi:10.2528/PIER09101502

    4. Gong, Q. Y. and Z. D. Zhu, "Study STAP algorithm on interference target detect under nonhomogeneous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
    doi:10.2528/PIERL10092705

    5. Liu, Y. P. and Q. Wan, "Total difference based partial sparse LCMV beamformer," Progress In Electromagnetics Research Letters, Vol. 18, 97-103, 2010.
    doi:10.2528/PIER08090703

    6. Zhang, Y., Q. Wan, and A. M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
    doi:10.2528/PIERL12010702

    7. Yang, M. and G. Zhang, "Compressive sensing based parameter estimation for monostatic MIMO noise radar," Progress In Electromagnetics Research Letters, Vol. 30, 133-143, 2012.

    8. Liu, Z., X. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.

    9. Maria, S. and J. J. Fuchs, "Application of the global matched filter to STAP data an efficient algorithmic approach," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 14-19, 2006.
    doi:10.1109/ICASSP.2010.5496219

    10. Selesnick, I. W., S. U. Pillai, K. Y. Li, and B. Himed, "Angle-doppler processing using sparse regularization," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 2750-2753, 2010.

    11. Parker, J. T. and L. C. Potter, "A Bayesian perspective on sparse regularization for STAP post-processing," Proc. IEEE Radar Conf., 1471-1475, May 2010.
    doi:10.1109/TAES.2010.5545209

    12. Li, J., X. Zhu, P. Stoica, and M. Rangaswamy, "High resolution angle-Doppler imaging for MTI radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 3, 1544-1556, Jul. 2010.

    13. Sun, K., H. Zhang, G. Li, H. Meng, and X. Wang, "A novel STAP algorithm using sparse recovery technique," Proc. IGARSS, 336-339, 2009.

    14. Yang, Z., Z. Liu, X. Li, and L. Nie, "Performance analysis of STAP algorithms based on fast sparse recovery techniques," Progress In Electromagnetics Research B, Vol. 41, 251-268, 2012.
    doi:10.1016/j.sigpro.2011.04.006

    15. Sun, K., H. Meng, Y. Wang, and X. Wang, "Direct data domain STAP using sparse representation of clutter spectrum," Signal Process., Vol. 91, No. 9, 2222-2236, 2011.
    doi:10.1109/TSP.2011.2172435

    16. Yang, Z., R. C. de Lamare, and X. Li, "L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar," IEEE Trans. Signal Process., Vol. 60, No. 2, 674-686, 2012.

    17. Yang, Z., R. C. de Lamare, and X. Li, "Sparsity-aware STAP algorithms for airborne radar based on conjugate gradient techniques," Proc. Sensor Signal Process. for Defence Conf., London, UK, 2011.
    doi:10.1007/s00041-008-9045-x

    18. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Applicat., Vol. 14, No. 5-6, 877-905, 2008.
    doi:10.1109/LSP.2012.2183592

    19. Xu, X., X. Wei, and Z. Ye, "DOA estimation based on sparse signal recovery utilizing weighted l1-norm penalty," IEEE Signal Process. Letters, Vol. 19, No. 3, 155-158, 2012.

    20. , , , http://www.stanford.edu/ boyd/cvx.