Vol. 42

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-07-02

Investigation of Cavity Reflex Antenna Using Circular Patch Type FSS Superstrate

By Abhay Kotnala, Prateek Juyal, Ashok Mittal, and Asok De
Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012
doi:10.2528/PIERB12042504

Abstract

Cavity reflex antenna (CRA) employing a circular patch type FSS (Frequency Selective Surface) superstrate is investigated. Analysis in terms of gain, bandwidth (impedance and gain) and radiation pattern has been presented. The aim of this work was to study low profile CRA having very thin superstrate sizes. In this CRA a circular patch antenna is used as a feeding source. The circular patch type FSS possesses some unique properties favorable for thin superstrate sizes. In practice when the excitation source of the CRA is a probe-fed microstrip antenna with finite ground plane, substrate and superstrate, cross-polarization increases. In the presented design, the cross polar level has been reduced by choosing the optimum air gap and superstrate geometrical and electrical properties. A CRA with circular patch type FSS offers better performance both in terms of gain and impedance bandwidth for, thin superstrates (0.008) while giving a gain of 13 dBi and considerably reduced crosspolar level. The proposed antenna exhibit nearly equal E-plane and H-plane radiation pattern. Measurement results are provided to support the simulated results (by Ansoft HFSS). The circular patch type FSS is easy to fabricate and can be embedded into the host profile.

Citation


Abhay Kotnala, Prateek Juyal, Ashok Mittal, and Asok De, "Investigation of Cavity Reflex Antenna Using Circular Patch Type FSS Superstrate," Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012.
doi:10.2528/PIERB12042504
http://jpier.org/PIERB/pier.php?paper=12042504

References


    1. Jackson, D. and N. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. on Antennas and Propag., Vol. 33, No. 9, 976-987, Sep. 1985.
    doi:10.1109/TAP.1985.1143709

    2. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. on Antennas and Propag., Vol. 32, 807-816, Aug. 1984.
    doi:10.1109/TAP.1984.1143433

    3. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high gain superstrate antenna for 60-GHz indoor communication," IEEE Antenna Wireless Propag. Lett., Vol. 8, 1422-1425, 2009.
    doi:10.1109/LAWP.2010.2040570

    4. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Trans. on Antennas and Propag.,, Vol. 53, No. 1, 224-235, Jan. 2005.
    doi:10.1109/TAP.2004.840521

    5. Attia, H., L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, and O. M.Ramahi , "Enhanced-gain microstrip antenna using engineered magnetic superstrates," IEEE Antenna Wireless Propag. Lett. , Vol. 8, 1198-1201, 2009.
    doi:10.1109/LAWP.2009.2035149

    6. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.

    7. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. on Antennas and Propag., Vol. 58, No. 2, 258-270, Feb. 2010.
    doi:10.1109/TAP.2009.2037702

    8. Zhao, T., D. R. Jackson, J. T.Williams, H. Y. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas - Part I: Metal patch design," IEEE Trans. on Antennas and Propag., Vol. 53, 3505-3514, Nov. 2005.

    9. Zhao, T., D. R. Jackson, and J. T. Williams, "2-D periodic leaky-wave antennas - Part II: Slot design," IEEE Trans. on Antennas and Propag., Vol. 53, 3515-3524, Nov. 2005.

    10. Maci, S., M. Caiazzo, A. Cucini, and M. Casaletti, "A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab," IEEE Trans. on Antennas and Propag., Vol. 53, 70-81, Jan. 2005.
    doi:10.1109/TAP.2004.840520

    11. Foroozesh, A. and L. Shafai, "On the characteristics of highly directive resonant cavity antenna having metal strip grating superstrate," IEEE Trans. on Antennas and Propag., Vol. 60, No. 1, 78-91, Jan. 2012.
    doi:10.1109/TAP.2011.2167933

    12. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Effect of superstrate height on gain of MSA fed fabry perot cavity antenna," Loughborough Antenna and Propagation Conference, 2011.

    13. Pirhadi, A., "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Trans. on Antennas and Propag., Vol. 60, No. 4, 2101-2106, 2012.
    doi:10.1109/TAP.2012.2186230

    14. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings, 2001.

    15. Feresidis, A. P., S. Wang, and C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low profile high gain planar antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, Jan. 2005.
    doi:10.1109/TAP.2004.840528

    16. Jackson, D. R., P. Burghignoli, G. Lovat, F. Capolino, J. Chen, D. R. Wilton, and A. A. Oliner, "The fundamental physics of directive beaming at microwave and optical frequency and the role of leaky waves," Proceedings of the IEEE, Vol. 99, No. 10, Oct. 2011.

    17. Zhao, T., D. R. Jackson, and J. T. Williams, "General formulas for 2D leaky wave antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 11, 3525-3533, Nov. 2005.
    doi:10.1109/TAP.2005.856315

    18. Balanis, C. A., "Antenna Theory: Analysis and Design," 3rd Edition, Wiley, New York, 2005.

    19. Lovat, G., P. Burghignoli, and D. R. Jackson, "Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas," IEEE Trans. on Antennas and Propag., Vol. 54, No. 5, 1442-1452, May 2006.
    doi:10.1109/TAP.2006.874350