Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-05-31

Mutual Coupling Analysis Using FDTD for Dielectric Resonator Antenna Reflectarray Radiation Prediction

By Izyani Dzulkipli, Mohd Haizal Jamaluddin, Raphael Gillard, Ronan Sauleau, Razali Ngah, Muhammad Ramlee Kamarudin, Norhudah Seman, and Mohamad Kamal Abd Rahim
Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012
doi:10.2528/PIERB12031404

Abstract

A simulation technique based on Finite-Difference Time-Domain (FDTD) is used to analyze mutual coupling effects in reflectarray environment. The neighbouring element method has the ability to analyze actual non-identical reflectarray unit-cell accurately compared to the traditional Floquet simulation which assumes all unit-cell is identical. It is also found that the nearest neighbouring unit-cell located in E-plane has a larger mutual coupling effects compared to the neighbouring unit-cell in H-plane. A good agreement is shown between simulation and measurement results. This technique presents a new prediction method for the radiation pattern of reflectarray antenna.

Citation


Izyani Dzulkipli, Mohd Haizal Jamaluddin, Raphael Gillard, Ronan Sauleau, Razali Ngah, Muhammad Ramlee Kamarudin, Norhudah Seman, and Mohamad Kamal Abd Rahim, "Mutual Coupling Analysis Using FDTD for Dielectric Resonator Antenna Reflectarray Radiation Prediction," Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012.
doi:10.2528/PIERB12031404
http://jpier.org/PIERB/pier.php?paper=12031404

References


    1. Berry, D. G. and R. G. Malech, "The reflectarray antenna," IEEE Trans. Antennas Propagat., Vol. 11, No. 6, 645-651, Nov. 1963.
    doi:10.1109/TAP.1963.1138112

    2. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 287-296, Feb. 1997.
    doi:10.1109/8.560348

    3. Encinar, J. A., L. S. Datashvili, J. Agustín Zornoza, M. Arrebola, M. Sierra-Castañer, J. L. Besada-Sanmartín, H. Baier, and H. Legay, "Dual-polarization dual-coverage reflectarray for space applications," IEEE Trans. Antennas Propagat., Vol. 54, No. 10, 2827-2837, Oct. 2006.
    doi:10.1109/TAP.2006.882172

    4. Arrebola, M., J. A. Encinar, and M. Barba, "Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1518-1527, Jun. 2008.
    doi:10.1109/TAP.2008.923360

    5. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth considerations for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
    doi:10.2528/PIERB07120405

    6. Li, R.-H., L. Chen, X.-T. Gu, and X.-W. Shi, "A novel element for broadband reflectarray antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1554-1563, 2011.
    doi:10.1163/156939311797164891

    7. Raedi, Y., S. Nikmehr, and A. Poorziad, "A novel bandwidth enhancement technique for X-band RF MEMS actuated reconfigurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
    doi:10.2528/PIER10101201

    8. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing mems-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
    doi:10.2528/PIER09112506

    9. Li, H., B. Z. Wang, L. Guo, W. Shao, and P. Du, "A far field pattern analysis technique for reflectarrays including mutual coupling between elements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 87-95, 2009.
    doi:10.1163/156939309787604607

    10. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1527-1537, 2008.
    doi:10.1163/156939308786390247

    11. Li, H., B.-Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
    doi:10.1163/156939307783239528

    12. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Bandwidth improvement of reflectarray antennas using closely spaced elements," Progress In Electromagnetics Research C, Vol. 18, 19-29, 2011.

    13. Ismail, M. Y. and M. Inam, "Performance improvement of reflectarrays based on embedded slots configurations," Progress In Electromagnetics Research C, Vol. 14, 67-78, 2010.
    doi:10.2528/PIERC10041904

    14. Huang, J., "Microstrip reflectarray," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 2, 612-615, Jun. 1991.

    15. Zubir, F., M. K. A. Rahim, O. Ayob, A. Wahid, and H. A. Majid, "Design and analysis of microstrip reflectarray antenna with Minowski shape radiating element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
    doi:10.2528/PIERB10071208

    16. Jamaluddin, M. H., R. Gillard, R. Sauleau, L. Le Coq, X. Castel, X. Benzerga, and T. Koleck, "Design, fabrication and characterization of a dielectric resonator antenna reflectarray in Ka-band," Progress In Electromagnetics Research B, Vol. 25, 261-275, 2010.
    doi:10.2528/PIERB10071306

    17. Milon, M. A., R. Gillard, and H. Legay, Rigorous analysis of the reflectarray radiating elements: Characterisation of the specular reflection effect and the mutual coupling effect, 29th ESA Antenna Workshop on Multiple Beams and Reconfigurable Antennas, Noordwijk, The Netherlands, Apr. 18-20, 2007.

    18. Targonski, S. D. and D. M. Pozar, "Analysis and design of a microstrip reflectarray using patches of variable size," IEEE Symp. Antennas Propagation, Vol. 3, 1820-1823, Jun. 1994.

    19. Veneri, F., G. Angiulli, and G. Di Massa, "Design of microstrip reflectarray using data from isolated patch analysis," Microw. Opt. Technol. Lett., Vol. 34, No. 6, 411-413, 2002.
    doi:10.1002/mop.10479

    20. Jamaluddin, M. H., R. Gillard, R. Sauleau, P. Dumon, and L. Le Coq, "Reflectarray element based on strip-loaded dielectric resonator antenna," IET Electronics Letters, Vol. 44, No. 11, 664-665, May 22, 2008.
    doi:10.1049/el:20080346

    21. Yang, H. Y. D., "Analysis of microstrip dipoles on planar artificial periodic dielectric structures," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 10, 1373-1388, 2004.
    doi:10.1163/1569393042954938

    22. Bhattacharyya, A. K., "Floquet modal based approach for mutual coupling between elements in array environment," IEEE International Symp. on Antennas and Propagation Society, Vol. 3, 1908-1911, 1996.

    23. Yun, Z. and M. F. Iskander, "Implementation of Floquet boundary conditions in FDTD analysis of periodic phased array antennas with skewed grid," Electromagnetics, Vol. 20, 445-452, 2010.

    24. Muhn, S.-J. and W.-S. Park, "Electromagnetic transmission through periodic narrow slit with a finite thickness," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1930-1939, 2011.
    doi:10.1163/156939311798072135

    25. Chen, S.-W., X.-P. Liang, and K. A. Zaki, "Propagation in periodically loaded dielectric waveguides," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 7, 669-683, 1991.

    26. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incidence case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.
    doi:10.1163/156939393X00020