Bacteria exist in a variety of groups of shapes, sizes, and single or multiple cell formations. In this paper, the level set shape reconstruction technique, the method of moments, and the marching cubes methods are integrated in the high frequency band for imaging three dimensional bacteria. The time step and the resolution of the marching cubes method are investigated to smooth the error function of the level set and hence speed up the convergence at high frequencies. The numerical results demonstrate the robustness of the level set algorithm for the detection of bacteria based on their shapes. The three dimensional shape reconstructions of unknown bacteria can be utilized to classify biological warfare agents.
2. Ivnitski, D., I. Abdel-Hamid, P. Atanasov, and E. Wilkins, "Biosensors for detection of pathogenic bacteria," Biosensors & Bioelectronics, Vol. 14, 599-624, 1999.
doi:10.1016/S0956-5663(99)00039-1
3. Watts, H. J., C. R. Lowe, and D. V. Pollard-Knight, "Optical biosensor for monitoring microbial cells," Anal. Chem., Vol. 66, 2465-70, 1994.
doi:10.1021/ac00087a010
4. Schneider, B., J. Edwards, and N. Hartman, "Hartman interferometer: Versatile integrated optic sensor for label-free, real-time quanti¯cation of nucleic acids, proteins, and pathogens," Clin. Chem., Vol. 43, No. 9, 1757-1763, 1997.
5. Meyera, M., M. Fauverb, J. Rahna, T. Neumanna, F. Pattena, E. Seibelc, and A. Nelson, "Automated cell analysis in 2D and 3D: A comparative study," Pattern Recognition, Vol. 42, 141-146, 2009.
doi:10.1016/j.patcog.2008.06.018
6. Nandakumar, V., L. Kelbauskas, R. Johnson, and D. Meldrum, "Quantitative characterization of preneoplastic progression using single-cell computed tomography and three-dimensional karyometry," Cytometry A, Vol. 79, No. 1, 25-34, 2011.
7. Hajihashemi, M. R. and M. El-Shenawee, "Inverse scattering of three-dimensional PEC objects using the level-set method," Progress In Electromagnetics Research, Vol. 116, 23-47, 2011.
8. Hajihashemi, M. R. and M. El-Shenawee, "The level set shape reconstruction algorithm applied to 2D PEC targets hidden behind a wall," Progress In Electromagnetics Research B, Vol. 25, 131-154, 2010.
doi:10.2528/PIERB10072612
9. Hajihashemi, M. R. and M. El-Shenawee, "TE versus TM for the shape reconstruction of 2-D PEC targets using the level-set algorithm," IEEE Trans. Geosci. & Rem. Sens., Vol. 48, No. 3, 1159-68, 2010.
doi:10.1109/TGRS.2009.2029698
10. Hajihashemi, M. R. and M. El-Shenawee, "Level set algorithm for shape reconstruction of non-overlapping three dimensional penetrable targets," IEEE Trans. Geosci. & Rem. Sens., Vol. 50, No. 1, 75-86, Jan. 2012.
doi:10.1109/TGRS.2011.2160548
11. Salle, A. J., Fundamental Principles of Bacteriology, 2nd Edition, McGraw-Hill Book Co., 1943.
12. , , "Treatment of biological warfare agent casualties,", ARMY FM 8-284, NAVY NAVMED P-5042, AIR FORCE AFMAN (I) 44-156, MARINE CORPS MCRP 4-11.1C, 2000.
13. El-Shenawee, M., O. Dorn, and M. Moscoso, "Adjoint-field technique for shape reconstruction of 3-D penetrable object immersed in lossy medium," IEEE Trans. Antennas and Propag., Vol. 57, No. 2, 520-534, Feb. 2009.
doi:10.1109/TAP.2008.2011195
14. Querry, M., B. Curnuttea, and N. Williams, "Refractive index of water in the infrared," J. of the Optical Society of America, Vol. 59, No. 10, 1969.
15. Liebe, H., G. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," Int. Journal of Infrared and Millimeter Waves, Vol. 12, No. 7, 659-675, 1991.
doi:10.1007/BF01008897
16. Palmer, K. and D. Williams, "Optical properties of water in the near infrared," J. of the Optical Society of America, Vol. 64, No. 8, 1974.
17. Kotnik, T., D. Miklavcic, and , "Second-order model of membrane electric field induced by alternating external electric fields," IEEE Trans. on Biomed. Eng., Vol. 47, No. 8, 1074-1081, 2000.
doi:10.1109/10.855935
18. Dubois, P., C. Dedeban, and J. Zolesio, "3D inverse scattering by level set with zero capacity connecting set. Wave guide optimization by `zone'," Proceedings of the First European Conference on Antennas and Propagation, 1-6, 2006.
doi:10.1109/EUCAP.2006.4584914
19. Hajihashemi, M. R. and M. El-Shenawee, "High performance computing of the level-set reconstruction algorithm," Journal of Parallel and Distributed Computing, Vol. 70, 671-679, Jun. 2010.
doi:10.1016/j.jpdc.2009.10.001
20. Hassan, A. M., M. R. Hajihashemi, M. El-Shenawee, A. Al-Zoubi, and A. Kishk, "Drift de-noising of experimental TE measurements for imaging 2D PEC cylinder using the level set algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1218-1222, 2009.
doi:10.1109/LAWP.2009.2035341
21. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of level-set reconstruction algorithm," IEEE Trans. Antennas and Propag., Vol. 58, No. 1, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186
22. Karpowicz, N., J. Chen, T. Tongue, and X.-C. Zhang, "Coherent millimeter wave to mid-infrared measurements with continuous bandwidth reaching 40 THz ," Electronics Letters, Vol. 44, 544-545, 2008.
doi:10.1049/el:20080356
23. Liu, J., J. Dai, X. Lu, I. Ho, and X.-C. Zhang, "Broadband terahertz wave generation, detection and coherent control using terahertz gas photonics," International Journal of High Speed Electronics and Systems, Vol. 20, No. 1, 3-12, 2011.
doi:10.1142/S0129156411006350
24. Bevilacqua, F., A. Berger, A. Cerussi, D. Jakubowski, and B. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Applied Optics, Vol. 39, No. 34, 6498-6507, Dec. 2000.
doi:10.1364/AO.39.006498