Vol. 38
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-01-13
Subcell Method for Modeling Metallic Resonators in Metamaterials
By
Progress In Electromagnetics Research B, Vol. 38, 135-164, 2012
Abstract
This paper describes a subcell modeling technique for metallic resonators where the actual metal traces are replaced by a thin wire having equivalent magnetic and electric radii, as well as an impedance per unit length. The formulas for these quantities in the case of rectangular traces are given. In addition, the gap of a split-ring resonator is replaced by a lumped load. The response of the resonator can then be modeled using thin-wire algorithms in an integral equation code. It is demonstrated that the number of unknowns and runtime can be reduced by factors of a thousand using the subcell models. This is particularly important in cases where metamaterial designs with tapered properties are encountered and periodic boundary conditions are not applicable, because with this simplification larger numbers of resonator cells can be handled.
Citation
Larry Kevin Warne, William A. Johnson, Lorena I. Basilio, William L. Langston, and Michael B. Sinclair, "Subcell Method for Modeling Metallic Resonators in Metamaterials," Progress In Electromagnetics Research B, Vol. 38, 135-164, 2012.
doi:10.2528/PIERB11111107
References

1. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

2. Grzegorczyk, T. M., C. D. Moss, J. Lu, X. Chen, J. Pacheco, Jr., and J. A. Kong, "Properties of left-handed metamaterials: Transmission, backward phase, negative refraction, and focusing," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 9, Sep. 2005.
doi:10.1109/TMTT.2005.854261

3. Johnson, W. A., L. K. Warne, L. I. Basilio, W. L. Langston, and M. B. Sinclair, "Subcell models with applications to split-ring resonators," IEEE APS-Symp., Spokane, WA, Jun. 2011.

4. Marcuvitz, N., Waveguide Handbook, 263-264, Peter Peregrinus, Ltd., London, 1986.
doi:10.1049/PBEW021E

5. Warne, L. K., "Eddy current power dissipation at sharp corners: Rectangular conductor examples," Electromagnetics, Vol. 15, 273-290, 1995.
doi:10.1080/02726349508908419

6. Abramowitz, M. and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, 231--233, 374--379, 589--592, Dover, New York, 1972.

7. Warne, L. K., "Eddy current power dissipation at sharp corners," IEEE Trans. on Microwave Theory and Tech., Vol. 42, No. 2, Feb. 1994.
doi:10.1109/22.275259

8. Kaye, G. W. C. and T. H. Laby, Tables of Physical and Chemical Constants, 117, Longman Scientific & Technical, John Wiley & Sons, Inc., New York, 1989.

9. Cockcroft, J. D., "Skin effect in rectangular conductors at high frequencies," Proceedings Royal Society, Vol. 122, 533-542, 1929.
doi:10.1098/rspa.1929.0038

10. Warne, L. K. and W. A. Johnson, Asymptotic expansion of the impedance per unit length of thin strip conductors, Sandia National Laboratories, 2005.

11. Johnson, W. A., L. I. Basilio, J. D. Kotulski, R. E. Jorgenson, L. K. Warne, R. Coats, D. Wilton, N. Champagne, F. Capolino, J. Grant, and M. Khayat, "EIGER: An open-source frequency domain electromagnetics code," IEEE APS-Symp., Honolulu, Hawaii, 2007.

12. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potentials integrals," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 10, 3180-3190, Oct. 2005.
doi:10.1109/TAP.2005.856342

13. Warne, L. K. and K. C. Chen, "Slot apertures having depth and losses described by local transmission line theory," IEEE Trans. on Electromagnetic Compatibility, Vol. 32, No. 3, 185-196, Aug. 1990.
doi:10.1109/15.57112

14. Chen, K. C. and L. K. Warne, "A uniformly valid loaded antenna theory," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 11, 1313-1323, Nov. 1992.
doi:10.1109/8.202709

15. Schelkunoff, S. A., Antenna Theory and Practice, 302--322, 361--388, 584--585, John Wiley & Sons, Inc., New York, 1952.

16. Hallén, E., Electromagnetic Theory, Section 35.3, 61--64, Chapman and Hall, London, 1962.

17. Warne, L. K. and K. C. Chen, "Effective impedance of bolt loads on narrow slot apertures having depth," Electromagnetic Waves and Applications, Vol. 6, No. 7, 891-910, 1992.

18. Warne, L. K., Low frequency capacitance of a tubular dipole, Sandia National Laboratories Internal Report, to R. H. Bonn, Dec. 14, 1990.

19. Chen, K. C. and L. K. Warne, "Improved asymptotic expansions of time domain antenna current," Radio Science, Vol. 26, No. 3, 1205-1208, Sep.--Oct. 1991.

20. Gradshteyn, I. S. and I. M. Ryzhik (eds.), Table of Integrals Series and Products, 420, Academic Press, New York, 1965.

21. Warne, L. K. and K. C. Chen, "Equivalent antenna radius for narrow slot apertures having depth," IEEE Trans. on Antennas and Propagation, Vol. 37, No. 7, 824-834, 1989.
doi:10.1109/8.29376

22. Shelton, D. J., D. W. Peters, M. B. Sinclair, I. Brenner, L. K. Warne, L. I. Basilio, K. R. Coffee, and G. D. Boreman, "Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials," Optics Express, Vol. 18, No. 2, Jan. 18, 2010.