Vol. 38
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-01-20
Modeling Terahertz Diffuse Scattering from Granular Media Using Radiative Transfer Theory
By
Progress In Electromagnetics Research B, Vol. 38, 205-223, 2012
Abstract
Terahertz (THz) spectroscopy can potentially be used to probe and characterize inhomogeneous materials. However, identification of spectral features from diffuse scattering by inhomogeneous materials has not received much attention until now. In this paper, THz diffuse scattering from granular media is modeled by applying radiative transfer (RT) theory for the first time in THz sensing. The diffuse scattered field from compressed polyethylene (PE) pellets containing steel spheres was measured in both transmission and reflection modes using a THz time domain spectroscopy (THz-TDS) system. The RT model was validated by successfully reproducing qualitative features observed in experimental results. Diffuse intensity from granular media containing lactose was then simulated using RT theory. In the results, spectral features of lactose were observed in the diffuse intensity spectra from the granular media.
Citation
Kyung M. Nam, Lisa Marie Zurk, and Scott Schecklman, "Modeling Terahertz Diffuse Scattering from Granular Media Using Radiative Transfer Theory," Progress In Electromagnetics Research B, Vol. 38, 205-223, 2012.
doi:10.2528/PIERB11102304
References

1. Mickan, S. P. and X.-C. Zhang, "T-ray sensing and imaging," Int. J. High Speed Electron. Syst., Vol. 13, No. 2, 601-676, 2003.
doi:10.1142/S0129156403001843

2. Van Exter, M. and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 11, 1684-1691, 1990.
doi:10.1109/22.60016

3. Kemp, M. C., P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, "Security applications of terahertz technology," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5070, 44-52, 2003.

4. Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications --- Explosives, weapons and drugs," Semicond. Sci. Technol., Vol. 20, No. 7, S266-S280, 2005.
doi:10.1088/0268-1242/20/7/018

5. Zeitler, A. (ed.), Terahertz spectroscopy: Theory and Applications, Springer Press, 2012.

6. Zurk, L. M., B. Orlowski, D. P. Winebrenner, E. I. Thorsos, M. R. Leahy-Hoppa, and L. M. Hayden, "Terahertz scattering from granular material," J. Opt. Soc. Am. B, Vol. 24, No. 9, 2238-2243, 2007.
doi:10.1364/JOSAB.24.002238

7. Arbab, M. H., A. Chen, E. I. Thorsos, D. P. Winebrenner, and L. M. Zurk, "Effect of surface scattering on terahertz time domain spectroscopy of chemicals," Proc. SPIE Int. Soc. Opt. Eng., Vol. 6893, 2008.

8. Henry, S. C., G. P. Kniffin, S. Schecklman, L. M. Zurk, and A. Chen, "Measurement and modeling of rough surface effects on terahertz spectroscopy," Proc. SPIE Int. Soc. Opt. Eng., Vol. 7601, 2010.

9. Sundberg, G., L. M. Zurk, S. Schecklman, and S. Henry, "Modeling rough-surface and granular scattering at terahertz frequencies using the finite-difference time-domain method," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3709-3719, 2010.
doi:10.1109/TGRS.2010.2048717

10. Schecklman, S., L. M. Zurk, S. C, Henry, and G. P. Kniffin, "Terahertz material detection from diffuse surface scattering," J. Appl. Phys., Vol. 109, No. 9, 2011.
doi:10.1063/1.3561806

11. Bandyopadhyay, A., A. Sengupta, R. B. Barat, D. E. Gary, and J. F. Federici, "Grain size dependent scattering studies of common materials using THz time domain techniques," Proc. SPIE Int. Soc. Opt. Eng., Vol. 6120, 2006.

12. Bandyopadhyay, A., A. Sengupta, R. B. Barat, D. E. Gary, J. F. Federici, M. Chen, and D. B. Tanner, "Effects of scattering on THz spectra of granular solids," Int. J. Infrared Millim. Waves, Vol. 28, No. 11, 969-978, 2007.
doi:10.1007/s10762-007-9276-y

13. Chau, K. J., S. Mujumdar, and A. Y. Elezzabi, "Terahertz propagation in non-homogeneous strongly scattering media," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5727, 177-185, 2005.

14. Pearce, J. and D. M. Mittleman, "Scale model experimentation: Using terahertz pulses to study light scattering," Phys. Med. Biol., Vol. 47, No. 21, 3823-3830, 2002.
doi:10.1088/0031-9155/47/21/321

15. Pearce, J. and D. M. Mittleman, "Using terahertz pulses to study light scattering," Physica B-Condensed Matter, Vol. 338, No. 1--4, 92-96, 2003.
doi:10.1016/S0921-4526(03)00467-8

16. Fletcher, J. R., G. P. Swift, D. C. Dai, J. A. Levitt, and J. M. Chamberlain, "Propagation of terahertz radiation through random structures: An alternative theoretical approach and experimental validation," J. Appl. Phys., Vol. 101, No. 1, 2007.
doi:10.1063/1.2403860

17. Zhang, X.-C., "Terahertz wave imaging: Horizons and hurdles," Phys. Med. Biol., Vol. 47, No. 21, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301

18. Ishimaru, A., Wave Propagation and Scattering in Random Media, IEEE Press-Oxford University Press, 1997.

19. Chandrasekhar, S., Radiative Transfer, Dover Publications, Inc., 1960.

20. Shin, R. T. and J. A. Kong, "Radiative transfer theory for active remote sensing of a homogeneous layer containing spherical scatterers," J. Appl. Phys., Vol. 52, No. 6, 4221-4230, 1981.
doi:10.1063/1.329271

21. Tsang, L. and J. A. Kong, "Radiative transfer theory for scattering by layered media," J. Appl. Phys., Vol. 50, No. 4, 2465-2469, 1979.
doi:10.1063/1.326255

22. Fung, A. K. and H. J. Eom, "Application of a combined rough surface and volume scattering theory to sea ice and snow backscatter," IEEE Trans. Geosci. Remote Sens., Vol. GE-20, No. 4, 528-536, 1982.
doi:10.1109/TGRS.1982.350421

23. Ma, Q., A. Ishimaru, P. Phu, and Y. Kuga, "Transmission, reflection, and depolarization of an optical wave for a single leaf," IEEE Trans. Geosci. Remote Sens., Vol. 28, No. 5, 865-872, 1990.
doi:10.1109/TGRS.1990.1238684

24. Tsang, L., C. Chen, A. Chang, J. Guo, and K. Ding, "Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow," Radio Sci., Vol. 35, No. 3, 731-749, 2000.
doi:10.1029/1999RS002270

25. Tsang, L., J. Pan, D. Liang, Z. Li, D. Cline, and Y. Tan, "Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 4, 990-1004, 2007.
doi:10.1109/TGRS.2006.888854

26. Wen, B., L. Tsang, D. P. Winebrenner, and A. Ishimaru, "Dense medium radiative transfer theory: Comparison with experiment and application to microwave remote sensing and polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 28, No. 1, 46-59, 1990.
doi:10.1109/36.45744

27. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Volume 3, Advanced Topics, John Wiley and Sons, 2001.
doi:10.1002/0471224278

28. Nam, K., Modeling terahertz diffuse scattering from granular media using radiative transfer theory, Master's Thesis, Portland State University, 2011.

29. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Volume 1, Theories and Applications, John Wiley and Sons, 2000.
doi:10.1002/0471224286

30. SmallParts.com, c/o Amazon.com, LLC, P. O. Box 81226, Seattle, WA 98108--1300, United States.
doi:10.1002/0471224286

31. Zurk, L. M., L. Tsang, K. H. Ding, and D. P. Winebrenner, "Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries," J. Opt. Soc. Am. A, Vol. 12, No. 8, 1772-1781, 1995.
doi:10.1364/JOSAA.12.001772

32. Zurk, L. M., L. Tsang, and D. P. Winebrenner, "Scattering properties of dense media from Monte Carlo simulations with application to active remote sensing of snow," Radio Sci., Vol. 31, No. 4, 803-819, 1996.
doi:10.1029/96RS00939

33. Ordal, M. A., R. J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied Optics, Vol. 24, No. 24, 4493-4499, 1985.
doi:10.1364/AO.24.004493

34. Ketprom, U., Y. Kuga, S. Jaruwatanadilok, and A. Ishimaru, "Experimental and numerical analysis of polarized light through random distributed spherical particles," Proc. SPIE Int. Soc. Opt. Eng., Vol. 4819, 35-45, 2002.