Vol. 37
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-12-07
Accurate and Efficient Analysis of Planar Electromagnetic Band-Gap Structures for Power Bus Noise Mitigation in the GHz Band
By
Progress In Electromagnetics Research B, Vol. 37, 59-80, 2012
Abstract
Noise reduction in PCB is a major concern in the present digital electronic systems with data rate beyond 10 Gbps. The noise, due to simultaneous switching noise, radiation from signal vias crossing the planes, etc. can propagate within parallel plane cavity at its resonant frequencies, thus allowing coupling between integrated circuits (ICs) far from each other. Electromagnetic band-gap (EBG) structures are largely employed as noise reduction technique. This paper presents a quick and efficient analytical approach for evaluating the EBG noise reduction performances in terms of band-gap limits. The study is based on the physics behavior of the planar EBG structures, focusing on its resonant properties. The resonant modes of the EBG cavity are affected by the additional inductance of the patterned plane respect to the case of the ideal solid plane cavity. The formulas provided, based on the quantification of such inductance, can be easily implemented and employed for a quick layout design of power planes in multilayer PCBs, as shown in a practical example of a partial EBG plane.
Citation
Francesco De Paulis, and Antonio Orlandi, "Accurate and Efficient Analysis of Planar Electromagnetic Band-Gap Structures for Power Bus Noise Mitigation in the GHz Band," Progress In Electromagnetics Research B, Vol. 37, 59-80, 2012.
doi:10.2528/PIERB11100402
References

1. Berghe, S. V., F. Olyslager, D. de Zutter, J. D. Moerloose, and W. Temmerman, "Study of the ground bounce caused by power plane resonances," IEEE Trans. Electromagn. Compat., Vol. 40, No. 2, 111-119, May 1998.
doi:10.1109/15.673616

2. Na, N., J. Jinseong, S. Chun, M. Swaminathan, and J. Srinivasan, "Modeling and transient simulation of planes in electronic packages ," IEEE Trans. Adv. Packag., Vol. 23, No. 3, 340-352, Aug. 2000.
doi:10.1109/6040.861546

3. Lei, G. T., R. W. Techentin, P. R. Hayes, D. J. Schwab, and B. K. Gilbert, "Wave model solution to the ground/power plane noise problem ," IEEE Trans. Instrum. Meas., Vol. 44, No. 2, 300-303, Apr. 1995.
doi:10.1109/19.377836

4. Okoshi, T., Planar Circuits for Microwaves and Lightwaves, Ch. 3, Springer-Verlag, Berlin, Germany, 1985.

5. Oo, Z. Z., E. X. Liu, E. P. Li, X. Wei, Y. Zhang, M. Tan, L. W. J. Li, and R. Vahldieck, "A semi-analytical approach for system-level electrical modeling of electronic packages with large number of vias," IEEE Trans. Adv. Packag., Vol. 31, No. 2, 267-274, May 2008.
doi:10.1109/TADVP.2008.923379

6. Huang, W.-T., C.-H. Lu, and D.-B. Lin, "The optimal number and location of grounded vias to reduce crosstalk," Progress In Electromagnetics Research, Vol. 95, 241-266, 2009.
doi:10.2528/PIER09071709

7. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.
doi:10.2528/PIER09091707

8. Choi, J., V. Govind, R. Mandrekar, S. Janagama, and M. Swaminathan, "Noise reduction and design methodology for the mixed-signal systems with alternating impedance electromagnetic bandgap (Al-EBG) structure," IEEE MTT-S Int. Microw. Symp. Dig., 645-651, Long Beach, CA, Jun. 2005.

9. Kim, T. H., D. Chung, E. Engin, W. Yun, Y. Toyota, and M. Swaminathan, "A novel synthesis method for designing electromagnetic bandgap (EBG) structures in packaged mixed signal systems ," Proc. 56th Electron. Compon. Technol. Conf., 1645-1651, 2006.

10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

11. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-d mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

12. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

13. Hajj, M., R. Chantalat, M. Lalande, and B. Jecko, "Sectoral M-EBG antenna with multipolarization capabilities for wimax base stations ," Progress In Electromagnetics Research C, Vol. 22, 211-229, 2011.
doi:10.2528/PIERC11020501

14. Khromova, I., I. Ederra, R. Gonzalo, and B. P. de Hon, "Symmetrical pyramidal horn antennas based on EBG structures," Progress In Electromagnetics Research B, Vol. 29, 1-22, 2011.
doi:10.2528/PIERB11020403

15. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

16. Hubing, T. H., J. L. Drewniak, T. P. Van Doren, and D. M. Hockanson, "Power-bus decoupling on multi-layer printed circuit boards," IEEE Trans. Electromagn. Compat., Vol. 37, 155-166, May 1995.
doi:10.1109/15.385878

17. Eom, D.-S., J. Byun, and H.-Y. Lee, "New composite power plane using spiral ebg and external magnetic material for SSN suppression ," Progress In Electromagnetics Research Letters, Vol. 15, 69-77, 2010.
doi:10.2528/PIERL10012104

18. He, H.-S., X.-Q. Lai, Q. Ye, Q. Wang, W.-D. Xu, J.-G. Jiang, and M.-X. Zang, "Wideband SSN suppression in high-speed PCB using novel planar EBG," Progress In Electromagnetics Research Letters, Vol. 18, 29-39, 2010.
doi:10.2528/PIERL10080102

19. Tavallaee, A. and R. Abhari, "2-D characterization of electromagnetic bandgap structures employed in power distribution networks ," IET Microw. Antennas Propag., Vol. 1, 204-211, Feb. 2007.
doi:10.1049/iet-map:20050336

20. Kamgaing, T. and O. M. Ramahi, "Design and modeling of high impedance electromagnetic surfaces for switching noise suppression in power planes," IEEE Trans. Electromagn. Compat., Vol. 47, No. 3, 479-489, Aug. 2005.
doi:10.1109/TEMC.2005.850692

21. Wang, T.-K., T. W. Han, and T.-L. Wu, "A novel power/ground layer using arti¯cial substrate EBG for simultaneously switching noise suppression," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 5, 1164-1171, May 2008.
doi:10.1109/TMTT.2008.921642

22. Wu, T.-L., H.-H. Chuang, and T.-K. Wang, "Overview of power integrity solutions on package and PCB: Decoupling and EBG isolation," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 346-356, May 2010.
doi:10.1109/TEMC.2009.2039575

23. Wu, T. L., Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, "Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2935-2942, Sep. 2005.
doi:10.1109/TMTT.2005.854248

24. Mohajer-Iravani, B., S. Shahparnia, and O. M. Ramahi, "Coupling reduction in enclosures and cavities using electromagnetic band gap structures ," IEEE Trans. Electromagn. Compat., Vol. 48, No. 2, 292-303, May 2006.
doi:10.1109/TEMC.2006.874666

25. De Paulis, F., L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, "Design of a common mode filter by using planar electromagnetic band-gap structures," IEEE Trans. on Advanced Packaging, Vol. 33, No. 4, 994-1002, Nov. 2010.
doi:10.1109/TADVP.2010.2046167

26. De Paulis, F., L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, "Compact configuration of a planar EBG based CM filter and crosstalk analysis," IEEE International Symposium on EMC, Long Beach, CA, USA, Aug. 14-19, 2011.

27. Mohajer-Iravani, B. and O. M. Ramahi, "Wideband circuit model for planar EBG structures," IEEE Trans. Adv. Packag., Vol. 33, No. 2, 345-354, May 2010.

28. Toyota, Y., E. Engin, T. Kim, M. Swaminathan, and K. Uriu, "Stopband prediction with dispersion diagram for electromagnetic bandgap structures in printed circuit boards," Proc. IEEE EMC Symp., 807-811, Portland, OR, Aug. 2006.

29. Kim, K. H. and J. E. Schutt-Aine, "Analysis and modeling of hybrid planartype electromagnetic-bandgap structures and feasibility study on power distribution network applications," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 178-186, Jan. 2008.
doi:10.1109/TMTT.2007.912199

30. Kim, T. H., D. Chung, E. Engin, W. Yun, Y. Toyota, and M. Swaminathan, "A novel synthesis method for designing electromagnetic band gap (EBG) structures in packaged mixed signal systems," Proc. 56th Electron. Compon. Technol. Conf., 1645-1651, San Diego, CA, May 30-Jun. 2, 2006.

31. Raimondo, L., F. De Paulis, and A. Orlandi, "A simple and e±cient design procedure for planar electromagnetic bandgap structures on printed circuit boards," IEEE Transaction on Electromagn. Compat., Vol. 53, No. 2, 482-490, May 2010.
doi:10.1109/TEMC.2010.2051549

32. Pozar, D. M., Microwave Engineering, 3rd Ed., New York, 2005.

33. Computer Simulation Technology CST Studio Suite, 2011, Available: http://www.cst.com/.