Vol. 35

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Time-Domain Integral Equation Solver for Radiation from Dipole Antenna Loaded with General BI-Isotropic Objects

By Hui Zhu, Ze-Hai Wu, Xiu Zhang, and Bin-Jie Hu
Progress In Electromagnetics Research B, Vol. 35, 349-367, 2011


Electromagnetic radiation by dipole antenna loaded with general bi-isotropic objects is investigated using time-domain integral equations. By introducing pairs of equivalent electric and magnetic sources, electromagnetic fields inside a homogeneous bi-isotropic region can be represented by these sources over its boundary. A series of coupled surface integral equations are obtained after imposing boundary conditions. These equations are solved numerically by the Galerkin's method that involves separate spatial and temporal testing procedures. The scaled Laguerre functions are used as the temporal basis and testing functions. The use of the Laguerre functions completely removes the time variable from computation, and the results are stable even at late times. Numerical results are presented and compared with analytical results, and similarities and differences are observed.


Hui Zhu, Ze-Hai Wu, Xiu Zhang, and Bin-Jie Hu, "Time-Domain Integral Equation Solver for Radiation from Dipole Antenna Loaded with General BI-Isotropic Objects," Progress In Electromagnetics Research B, Vol. 35, 349-367, 2011.


    1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, MA, 1994.

    2. Lindman, K. F., "Ober eine durch ein isotropes system von spiralformigen resonatoren erzeugte rotationspolarisation der elektromagnetischen wellen," Ann. Phys., Vol. 63, 621-644, 1920.

    3. Tellegen, B. D. H., "The gyrator: A new electric network element," Phillips Res. Rep., Vol. 3, 81, 1948.

    4. Varadan, V. V., R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8--40 GHz range," Radio Sci., Vol. 29, No. 1, 9-22, 1994.

    5. Bahr, A. J. and K. R. Clausing, "An approximate model for artificial chiral material," IEEE Trans. on Antennas and Propogat., Vol. 42, No. 12, 1592-1599, Dec. 1994.

    6. Tretyakov, S. A., S. I. Maslovski, I. S. Nefedov, A. J. Viitanen, P. A. Belov, and A. Sanmartin, "Artificial Tellegen particle," Electromagn., Vol. 23, No. 8, 665-680, 2003.

    7. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electron. Lett., Vol. 29, 1048-1049, Jun. 1993.

    8. Engheta, N. and P. Pelet, "Reduction of surface waves in chirostrip antennas," Electron. Lett., Vol. 27, 5-7, Jan. 1991.

    9. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. on Antennas and Propogat., Vol. 38, 90-98, Jan. 1990.

    10. Lindell, I. V., S. A. Tretyakov, and M. I. Oksanen, "Conductor-backed Tellegen slab as twist polarizer," Electron. Lett., Vol. 28, 281-282, 1992.

    11. Monzon, J. C., "Radiation and scattering in homogeneous general biisotropic regions," IEEE Trans. on Antennas and Propogat., Vol. 38, No. 2, 227-235, Feb. 1990.

    12. Monzon, J. C., "Scattering by a biisotropic body," IEEE Trans. on Antennas and Propogat., Vol. 43, No. 11, 1288-1296, Nov. 1995.

    13. Kluskens, M. S. and E. H. Newman, "Scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. on Antennas and Propogat., Vol. 38, No. 9, 1448-1455, Sep. 1990.

    14. Jaggard, D. L. and J. C. Liu, "The matrix Riccati equation for scattering from stratified chiral spheres," IEEE Trans. on Antennas and Propogat., Vol. 47, No. 7, 1201-1207, Jul. 1999.

    15. Wang, D. X., E. K. N. Yung, R. S. Chen, and P. Y. Lau, "Scattering characteristics of general bi-isotropic objects using surface integral equations," Radio Sci., Vol. 41, No. 2, Apr. 2006.

    16. Engheta, N. and M. W. Kowarz, "Antenna radiation in the presence of a chiral sphere," J. Appl. Phys., Vol. 67, No. 2, 639-647, Jan. 1990.

    17. Rao, S. M., Time Domain Electromagnetic, Academic, New York, 1999.

    18. Ryne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 12, 1181-1205, 1990.

    19. Davies, P. J., "On the stability of time-marching schemes for the general surface electric-field integral equation," IEEE Trans. on Antennas and Propagat., Vol. 44, 1467-1473, Nov. 1996.

    20. Jung, B. H., T. K. Sarkar, Y. S. Chung, and Z. Ji, "An accurate and stable implicit solution for transient scattering and radiation from wire structures," Microwave Opt. Technol. Lett., Vol. 34, No. 5, 354-359, Sep. 2002.

    21. Jung, B. H., T. K. Sarkar, Y. S. Chung, S. P. Magdalena, Z. Ji, S. Jang, and K. Kim, "Transient electromagnetic scattering from dielectric objects using the electric field integral equation with laguerre polynomials as temporal basis functions," IEEE Trans. on Antennas and Propogat., Vol. 52, No. 9, 2329-2339, Sep. 2004.

    22. Jung, B. H., et al., "Solving the time-domain magnetic field integral equation for dielectric bodies without the time variable through the use of entire domain Laguerre polynomials," Electromagn., Vol. 24, No. 6, 385-408, Sep. 2004.

    23. Jung, B.-H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.

    24. Wu, Z. H., Time domain integral equations for scattering and radiation by three-dimensional homogeneous bi-isotropic objects with arbitrary shape, Ph.D. Dissertation, City University of Hong Kong, Hong Kong, Jul. 2010.

    25. Harrington, R. F., Field Computation by Moment Methods, New York, 1968.

    26. Rao, S. M., Electromagnetic scattering and radiation of arbitrarily shaped surfaces by triangular patch modeling, PhD. Dissertation, University of Mississippi, Aug. 1980.

    27. Sihvola, A. H. and I. V. Lindell, "Bi-isotropic constitutive relations," Microwave Opt. Technol. Lett., Vol. 4, No. 8, 295-297, Jul. 1991.

    28. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic, New York, 1980.

    29. http://www.feko.info/.

    30. Wang, D. X., E. K. N. Yung, and R. S. Chen, A new method for analyzing the electromagnetic characteristics of a body of complex medium, Asia Pacific Microwave Conference, Hong Kong, Dec. 2008.

    31. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. on Antennas and Propogat., Vol. 53, No. 10, 3374-3384, Oct. 2005.

    32. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media," IEEE Trans. on Antennas and Propogat., Vol. 52, No. 2, 416-425, Feb. 2004.