Vol. 37
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-12-21
Homogenized Permittivity of Composites with Aligned Cylindrical Inclusions for Causal Electromagnetic Simulations
By
Progress In Electromagnetics Research B, Vol. 37, 205-235, 2012
Abstract
The paper gives an analytical transition from the Maxwell Garnett model of a biphasic mixture (dielectric host and dielectric or conducting inclusions) to the parameters of a single- or double-term Debye representation of the material frequency response. The paper is focused on modeling biphasic mixtures containing cylindrical inclusions. This is practically important for engineering electromagnetic absorbing composite materials, for example, containing carbon fibers. The causal Debye representation is important for incorporation of a composite material in numerical electromagnetic codes, especially time-domain techniques, such as the finite-difference time-domain (FDTD) technique. The equations derived in this paper are different for different types of host and inclusion materials. The corresponding cases for the typical combinations of host and inclusion materials are considered, and examples are provided. The difference between the original Maxwell Garnett model and the derived Debye model is quantified for validating the proposed analytical derivation. It is demonstrated that in some cases the derived equivalent Debye model well approximates the frequency characteristics of the homogeneous model based on the MGA, and in some cases there is an exact match between Debye and Maxwell Garnett models.
Citation
Francesco De Paulis, Muhammet Hilmi Nisanci, Marina Koledintseva, James Drewniak, and Antonio Orlandi, "Homogenized Permittivity of Composites with Aligned Cylindrical Inclusions for Causal Electromagnetic Simulations," Progress In Electromagnetics Research B, Vol. 37, 205-235, 2012.
doi:10.2528/PIERB11072805
References

1. Chou, T.-C., M.-H. Tsai, and C.-Y. Chen, "A low insertion loss and high selectivity UWB bandpass filter using composite right/left-handed material," Progress In Electromagnetics Research C, Vol. 17, 163-172, 2010.
doi:10.2528/PIERC10100501

2. Galehdar, A., W. S. T. Rowe, K. Ghorbani, P. J. Callus, S. John, and C. H.Wang, "The effect of ply orientation on the performance of antennas in or on carbon fiber composites," Progress In Electromagnetics Research, Vol. 116, 123-136, 2011.

3. De Rosa, I. M., R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, "Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, 700-707, August 2009.
doi:10.1109/TEMC.2009.2018125

4. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601

5. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903

6. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502

7. Teirikangas, M., J. Juuti, and H. Jantunen, "Organic-inorganic RF composites with enhanced permittivity by nanoparticle additions ," Progress In Electromagnetics Research, Vol. 115, 147-157, 2011.

8. Liao, Y., C. Zhang, Y. Zhang, V. Strong, J. Tang, X. Li, K. Kalantar-zadeh, E. M. V. Hoek, K. L. Wang, and R. B. Kaner, "Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors ," Nano Letters, Vol. 11, 954-959, 2011.
doi:10.1021/nl103322b

9. Santos, J., B. Lopes, and P. J. Costa Branco, "Ionic polymermetal composite material as a diaphragm for micropump devices," Sensors and Actuators A: Physical, Vol. 161, 225-233, June 2010.
doi:10.1016/j.sna.2010.04.032

10. Wang, J., J. Chen, K. Konstantinov, L. Zhao, S. H. Ng, G. X. Wang, Z. P. Guo, and H. K. Liu, "Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries ," Electrochimica Acta, Vol. 51, 4634-4638, June 2006.
doi:10.1016/j.electacta.2005.12.046

11. Winther-Jensen, B., K. Fraser, C. Ong, M. Forsyth, and D. R. MacFarlane, "Conducting polymer composite materials for hydrogen generation," Advanced Materials, Vol. 22, No. 15, 1727-1730, April 2010.
doi:10.1002/adma.200902934

12. Gao, D. and L. Gao, "Tunable lateral shift through nonlinear composites of nonspherical particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.
doi:10.2528/PIER09102404

13. Bruggeman, D. A. G., "Berechnung verschiedener physikalischer konstanten von heterogenen substanzen," Annalen der Physik, Vol. 5, No. 24, 636-679, 1936.

14. McLachlan, D. S., A. Priou, I. Chernie, E. Isaac, and E. Henry, "Modeling the permittivity of composite materials with general effective medium equation," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 6, 1099-1131, 1992.

15. Maxwell Garnett, J. C., "Colours in metal glasses and metal films," Philos. Trans. R. Soc. London, Sect. A, Vol. 3, 385-420, 1904.
doi:10.1098/rsta.1904.0024

16. Tinga, W. R., W. A. G. Voss, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. Appl. Phys., Vol. 44, No. 9, 3897-3902, 1973.
doi:10.1063/1.1662868

17. Levy, O. and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B, Vol. 56, No. 13, 8035-8046, October 1997.
doi:10.1103/PhysRevB.56.8035

18. Moiseev, S. G., "Active Maxwell-Garnett composite with the unit refractive index ," Physica B: Condensed Matter, Vol. 405, No. 14, 3042-3045, 2010.
doi:10.1016/j.physb.2010.01.045

19. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Physical Review B, Vol. 53, 6318-6336, March 1996.
doi:10.1103/PhysRevB.53.6318

20. Ruppin, R., "Evaluation of extended Maxwell-Garnett theories," Optics Communications, Vol. 182, 273-279, August 2000.
doi:10.1016/S0030-4018(00)00825-7

21. Lu, S. Y. and H. C. Lin, "Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity," J. Appl. Phys., Vol. 79, 6761-6769, 1996.
doi:10.1063/1.361498

22. Skryabin, I. L., A. V. Radchik, P. Moses, and G. B. Smith, "The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites," Appl. Phys. Lett., Vol. 70, 2221-2223, April 1997.

23. Sihvola, A. H., "Self-consistency aspects of dielectric mixing theories," IEEE Trans. on Geoscience and Remote Sensing, Vol. 27, 403-415, July 1989.

24. Garcia-Vidal, F. J., J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett., Vol. 78, 4289-4292, 1997.
doi:10.1103/PhysRevLett.78.4289

25. Ao, C. O., Electromagnetic wave scattering by discrete random media with remote sensing applications, Ph.D. dissertation, Dept. Physics, Massachusetts Institute of Technology, Cambridge, MA, June 2001.

26. Brosseau, C., A. Beroual, and A. Boudida, "How shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric hetero structures?," J. Appl. Phys., Vol. 88, 7278-7288, 2000.
doi:10.1063/1.1321779

27. Ao, C. O. and J. A. Kong, "Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids," J. Opt. Soc. Am. A, Vol. 19, 1145-1156, June 2002.
doi:10.1364/JOSAA.19.001145

28. Barrera, R. G., J. Giraldo, and W. L. Mochan, "Effective dielectric response of a composite with aligned spheroidal inclusions," Phys. Rev. B, Vol. 47, No. 4, 8528-8538, April 1993.
doi:10.1103/PhysRevB.47.8528

29. Varadan, V. V. and V. K. Varadan, "Anisotropic dielectric properties of media containing aligned non-spherical scatterers," IEEE Trans. Antennas and Propagation, Vol. 33, No. 8, 886-890, August 1985.
doi:10.1109/TAP.1985.1143675

30. Xu, X., A. Qing, Y. B. Gan, and Y. P. Feng, "Effective properties of fiber composite materials," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 5, 649-662, 2004.
doi:10.1163/156939304774114682

31. Srivastava, V. K., U. Gabbert, H. Berger, and S. Singh, "Analysis of particles loaded fiber composites for the evaluation of effective material properties with the variation of shape and size," International Journal of Engineering, Science and Technology, Vol. 3, No. 1, 52-68, 2011.
doi:10.4314/ijest.v3i1.67638

32. Antonini, G., A. Orlandi, and V. Ricchiuti, "Causality check for si data validation," 9th IEEE Workshop on Signal Propagation on Interconnects, Garmish-Partenkirchen, Ge, May 2005.

33. Mandrekar, R. and M. Swaminathan, "Delay extraction from frequency domain data for causal macro-modeling of passive networks," IEEE International Symposium on Circuits and Systems, Vol. 6, 5758-5761, May 2005.

34. Triverio, P. and S. G. Talocia, "A robust causality verification tool for tabulated frequency data," 10th IEEE Workshop on Signal Propagation on Interconnects, Berlin, Ge, May 2006.

35. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Santa Clara, CA, Vol. 1, 309-314, August 2004.

36. Nisanci, M. H., F. De Paulis, M. Y. Koledintseva, and A. Orlandi, "Use of Maxwell Garnett model for random and aligned cylindrical inclusions in full wave EMC simulations," IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, August 2011.

37. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "Maxwell Garnett rule for dielectric mixtures with statistically distributed orientations of inclusions," Progress In Electromagnetics Research, Vol. 99, 131-148, 2009.
doi:10.2528/PIER09091605

38. Sihlova, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. on Geoscience and Remote Sensing, Vol. 26, 420-429, July 1988.

39. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies ," Progress In Electromagnetics Research, Vol. 77, 193-214, 2007.
doi:10.2528/PIER07073103

40. Sihvola, A., "Electromagnetic mixing formulas and applications," IEE, London, UK, 1999.

41. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., 2nd revised edition, Oxford, Pergamon, 1984.

42. Park, H. S., I. S. Choi, J. K. Bang, S. H. Suk, S. S. Lee, and H. T. Kim, "Optimized design of radar absorbing materials for complex targets," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1105-1117, 2004.
doi:10.1163/1569393042955432

43. Meng, Z. Q., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506

44. Donelli, M., S. Caorsi, F. de Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, 2004.
doi:10.1163/1569393042954893

45. Koledintseva, M., K. Rozanov, and J. Drewniak, "Engineering, modeling and testing of composite absorbing materials for EMC applications," Advances in Composite Materials --- Ecodesign and Analysis, Chapter 13, 291-316, Brahim Attaf, InTech, March 2011.

46. De Paulis, F., M. H. Nisanci, M. Y. Koledintseva, and A. Orlandi, "From Maxwell Garnett to Debye model for electromagnetic simulation of composite dielectrics. Part I: Random spherical inclusions," IEEE Trans. Electromag. Compat., 2011.

47. http://orlandi.ing.univaq.it/Uaq Laboratory/docs/mg2d/Equations Part I.pdf.

48. Nisanci, M. H., M. H., F. De Paulis, M. Y. Koledintseva, and A. Orlandi, "From Maxwell Garnett to Debye model for electromagnetic simulation of composite dielectrics. Part II: Random cylindrical inclusions," IEEE Trans. Electromag. Compat., 2011.

49. http://orlandi.ing.univaq.it/Uaq Laboratory/docs/mg2d/Equations Part II.pdf.

50. Teflon Dielectric Properties, http://www.dupont.com/Teflon-Industrial/en US/products/product by name/teflon, November 2010.

51. Koledintseva, M. Y., J. Drewniak, and R. DuBroff, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410

52. Cho, K. H. and H. Y. Lee, "Pore-dependent dielectric and electrical properties of barium titanate ceramic," Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics , University Park, PA, USA., August 1991.

53. Norman, R. H., Electrically Conducting Rubber Composites, Elsevier, Oxford, 1970.

54. IEEE Standard P1597 Standard for Validation of Computational Electromagnetics Computer Modeling and Simulation, Part 1, 2, 2008.

55. Duffy, A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S. Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part I --- The FSV method," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 449-459, 2006.
doi:10.1109/TEMC.2006.879358

56. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II ---| Assessment of FSV performance," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 460-467, 2006.
doi:10.1109/TEMC.2006.879360

57. Orlandi, A., , FSV Tool, 2011, downloadable at http://uaqemc.ing.univaq.it/uaqemc/FSV Tool 2 0 0L/.
doi:10.1109/TEMC.2006.879360

58. Computer Simulation Technology CST Studio Suite, 2011, [Online], Available: http://www.cst.com/.

59. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing, Ch. 2, 8, 10, and 11, 2nd edition, Prentice Hall Inc., 1999.

60. Hahn, S. L., Hilbert Transform in Signal Processing, Artech House Publishers, 2000.